
The Agile Method Collection

A collection of articles and writings on
today’s most indispensable Agile Methods.

Jerome Kehrli

Agility in Software Development is a lot of things, a collection of so many diferent
methods. In a recent article I presented the Agile Landscape V3 from Christopher
Webb which does a great job in listing these methods and underlying how much
Agility is much more than some scrum practices on top of some XP principles.

I really like this infographic since I can recover most-if-not-all of the principles and
practices from the methods I am following.

Recently I fgured that I have written on this very blog quite a number of articles
related to these very Agile Methods and after so much writing I thought I should
assemble these articles in a book.

So here it is, the The Agile Methods Collection book.

The book is simply a somewhat reformatted version of all the following articles:

• Agile Landscape from Deloitte

• Agile Software Development, lessons learned

• Agile Planning : tools and processes

• DevOps explained

• The Lean Startup - A focus on Practices

• Periodic Table of Agile Principles and Practices

So if you already read all these articles, don't download this book.

If you didn't so far or want to have a kind of reference on all the methods from the
collection illustrated above, you might fnd this book useful.

I hope you'll have as much pleasure reading it than I had writing all these articles.

2 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/agile-landscape
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles
https://www.niceideas.ch/roller2/badtrash/entry/lean-startup-a-focus-on
https://www.niceideas.ch/roller2/badtrash/entry/devops-explained
https://www.niceideas.ch/roller2/badtrash/entry/agile-planning-tools-and-processes
https://www.niceideas.ch/roller2/badtrash/entry/agile-software-development-lessons-learned
https://www.niceideas.ch/roller2/badtrash/entry/agile-landscape

Table of Contents

1. Agile Landscape from Deloitte...7
1.1 Agile Design..8
1.2 Agile Development...9
1.3 Agile Operation..9
1.4 Agile Management..9
1.5 Conclusion..11

2. Agile Software Development, lessons learned...12
2.1 Agile Software Development...12

2.1.1 Why Agile anyway ?..13
2.1.2 Agile Development Value Proposition..14
2.1.3 Scrum..16
2.1.4 Kanban..17
2.1.5 Prerequisites : XP !..18
2.1.6 Benefts : DevOps, Lean Startup...19

2.2 Scrum roles...20
2.3 From Story Maps to Product Backlog...22

2.3.1 User Stories...22
2.3.2 Story Maps...23
2.3.3 From User stories to Developer Tasks..26

2.4. From User Stories to Releases...27
2.4.1 Composing our releases..28
2.4.2 Composing the sprint..29
2.4.3 Estimations in Story Points..31

2.5. Introducing our sprints...33
2.5.1 Before Sprint...33
2.5.2 During Sprint...34
2.5.3 After Sprint..35

2.6 Release Backlog and Sprint Backlog..36
2.6.1 Diferent release backlogs, long term backlog, sprint backlog36
2.6.2 While being Agile...38
2.6.3 Handling customer requests and production concerns...................39
2.6.4 Sprint Kanban backlog management..39

2.7 Conclusion..41

3. Agile Planning : tools and processes...43
3.1 Introduction...45
3.2 The Fundamentals...47

3.2.1 eXtreme Programming..47

3 The Agile Methods Collection / Jerome Kehrli

3.2.2 Scrum..50
3.2.3 DevOps..52
3.2.4 Lean Startup..54
3.2.5 Visual Management and Kanban...56

3.2.5.1 Story Map..57
3.2.5.2 Product Backlog..60
3.2.5.3 Kanban Board...61
3.2.5.4 User Stories..62

3.3. Principles..63
3.3.1 The tools..64
3.3.2 The Organization...64

3.3.2.1 Required roles...65
3.3.2.2 Required Committees and teams..66

3.3.3 The Processes..68
3.3.3.1 Design Process..68
3.3.3.2 Estimation Process..70
3.3.3.3 Product Kanban Board Maintenance Process................................74
3.3.3.4 Story Map and Backlog synchronization Process..........................78
3.3.3.5 Forecasting...80
3.3.3.6 Development process: Scrum...83

3.3.4 The Rituals...85
3.3.4.1 Product Management Committee...85
3.3.4.2 Architecture Committee..86
3.3.4.3 Sprint Management Committee..87
3.3.4.4 Development Team - Daily Scrum...88

3.3.5 The Values...88
3.4 Overview of the whole process..89
3.5 Return on Practices...90
3.6. Conclusion...91

4. DevOps explained..93
4.1 Introduction...94

4.1.1 The management credo..95
4.1.2 a typical IT organization..95
4.1.3 Ops frustration..97
4.1.4 Infrastructure automation...98
4.1.5 DevOps : For once, a magic silver bullet.......................................100

4.2 Infrastructure as Code...101
4.2.1 Overview...102
4.2.2 DevOps Toolchains..102
4.2.3 Benefts...103

4.3 Continuous Delivery...104
4.3.1 Learn from the feld...106
4.3.2 Automation..107
4.3.3 Deploy more often...107

4 The Agile Methods Collection / Jerome Kehrli

4.3.4 Continuous Delivery requirements..109
4.3.5 Zero Downtime Deployments..109

4.4 Collaboration...112
4.4.1 The wall of confusion...113
4.4.2 Software Development Process...115
4.4.3 Share the Tools..116
4.4.4 Work Together...117

4.5 Conclusion..118

5. The Lean Startup - A focus on Practices..120
5.1. The Lean Startup..121

5.1.1 Origins...122
5.1.2 The movement..123
5.1.3 Principles...123
5.1.4 The Feedback Loop..125
5.1.5 Business Model Canvas and Lean Canvas.....................................126
5.1.6 Customer Development...129

5.2 The four steps to the Epiphany..129
5.2.1 Overview...130
5.2.2 A 4 steps process..130

5.3 Lean startup practices..131
5.3.1 Customer Discovery..132

5.3.1.1 Get out of the building..133
5.3.1.2 Problem interview...136
5.3.1.3 Solution interview...137

5.3.2 Customer Validation..138
5.3.2.1 MVP...139
5.3.2.2 Fail Fast...141

5.3.3 Re-adapt the product...143
5.3.3.1 Metrics Obsession...144
5.3.3.2 Pivot..145

5.3.4 Get new customers...147
5.3.4.1 Pizza Teams...147
5.3.4.2 Feature Teams...148
5.3.4.3 Build vs. Buy...151
5.3.4.4 A/B Testing..152
5.3.4.5 Scaling Agile...153

5.3.5 Company creation...154
5.4. Conclusions...155

6. Periodic Table of Agile Principles and Practices.....................................156
6.1 The Periodic Table of Agile Principles and Practices...156
6.2. Layout Principle...157
6.3. Remarks...158
6.4. Principles and Practices..158

5 The Agile Methods Collection / Jerome Kehrli

6.4.1 XP..158
6.4.2 Scrum..162
6.4.3 Product Development..166
6.4.4 DevOps..168
6.4.5 Lean Startup..172
6.4.6 Kanban..174
6.4.7 Kaizen..174
6.4.8 FDD (Feature Driven Development)..175
6.4.9 DAD...176

6 The Agile Methods Collection / Jerome Kehrli

1. Agile Landscape from Deloitte

1. Agile Landscape from Deloitte

I've seen this infographic from Christopher Webb at Deloitte (at the time) some
months ago.
This is the most brilliant infographic I've seen for years.

Christopher Webb presents here a pretty extended set of Agile Practices associated
to their respective frameworks. The practices presented are a collection of all Agile
practices down the line, related to engineering but also management, product
identifcation, design, operation, etc.

(Source : Christopher Webb - LAST Conference 2016 Agile Landscape -
https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-

presentation-v1)

I fnd this infographic brilliant since its the frst time I see a sone ring to rule them
alls view of what I consider should be the practices towards scaling Agility at the
level of the whole IT Organization.

Very often, when we think of Agility, we limit our consideration to solely the Software
Build Process.
But Agility is more than that. And I believe an Agile corporation should embrace also
Agile Design, Agile Operations and Agile Management.

7 The Agile Methods Collection / Jerome Kehrli

https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1
https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1

1. Agile Landscape from Deloitte

This infographic does a great job in presenting how these frameworks enrich and
complements each others towards scaling Agility at the level of the whole IT
Organization.

To be honest there are even many more frameworks that those indicated on this
infographic and Chris Webb is presenting some additional - reaching 43 in total - in
his presentation.
But I believe he did a great job in presenting the most essential ones and presenting
how these practices, principles and framework work together to achieve the ultimate
goal of every corporation: skyrocketing employee productivity and happiness,
maximizing customer satisfaction and blowing operational efciency up.

Now I would want to present why I think considering Agility down the line in each
and every aspect around the engineering team and how these frameworks
completing each other are important.

1.1 Agile Design

Normally I am a little sensitive with formal meaning of the word design in software
engineering.

But for once I'll make an exception.
So for once, by design here, I mean the largest possible defnition of the term,
encompassing as much the discovery of the key features as well as the architecture
of the system to be implemented.

Agility in identifying beforehand the product to be implemented and its key features
is a must.
Later when the rough form of the product is identifed, the process consists in having
a Vision workshop to align the stakeholders on the product vision, then Story
Mapping workshops, all of these emphasizing Agility, Adaptation and lightweight
processes in comparison to the tons of documents produced by more traditional
methods.

This is pretty well covered in the infographic above and Design thinking covers all
the practices that seem key to me such from the light Business Model Canvas to
Product Vision defnition workshops and Story Mapping workshops.

At the end of the day, Agility is mostly about the capacity to adapt and react to
changing requirements and changing priorities. Enforcing thorough product
identifcation and feature design phases before actually initiating the development
of an MVP aimed at validating (or contradicting) the hypothesis makes little sense in
my opinion.
One important framework to consider here is the Lean approach and the Lean
startup Practices discussed in chapter 5. The Lean Startup - A focus on Practices.

8 The Agile Methods Collection / Jerome Kehrli

https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1

1. Agile Landscape from Deloitte

At the end of the day, Agile Software Development methodologies cannot deploy
their full potential if the company itself is not Agile.

1.2 Agile Development

At the root of everything there is XP. eXtreme Programming was mostly initiated by
Kent Beck, strong from his experience on the C3 project. Kent Beck hardly invented a
lot of things but rather took some practices more or less used previously in the
industry and took them to extreme levels.

Agile Software Development is really built on top of XP genes. Today XP is considered
just another Agile Software Development Framework, but I don't share that view. To
me, XP and the related practices form the most fundamental core of Agile Software
Development Methodologies.
XP Practices take a form or another in the various Agile Frameworks such as RDD,
Scrum, Kanban, Scrumban, etc. In some of them some core XP practices are not
mentioned; not because they should not be applied, but really because they're
nowadays considered so natural that they're assumed. Think for instance of TDD
(Unit Tests frst), Continuous Integration, Simple Metaphor (Meaningful Naming,
Domain Driven Design, Design patterns), etc.

I discussed in this chapter : 2. Agile Software Development, lessons learned the
software development methodology we are using in my current company and
interestingly all of our practices are pretty well identifed on the infographic above.

1.3 Agile Operation

Agile operation is really about DevOps.

I developed in length in a dedicated article on this very blog what DevOps is and
why it's important so I let the reader refer to this chapter : 4. DevOps explained.

Let's just mention that here as well it is hard for the development team to leverage
its Agile practices if the other departments of the corporation - and out of those the
operation is crucial - have not embraced Agility.

1.4 Agile Management

Agile management is about Leadership and Leadership pursues the goal of growing
and transforming organizations into great places to work for, where people are
engaged, the work is improved and customers are simply delighted.

Agile Management is a lot about Management 3.0.

Management 1.0 was about doing the wrong thing, by treating people like cogs in
a system.

9 The Agile Methods Collection / Jerome Kehrli

1. Agile Landscape from Deloitte

Management 2.0 was about doing the right thing wrong, with understanding the
goals and having good intentions, but using old-fashioned top-down initiatives.

Management 3.0 is about doing the right thing for the team, involving everyone in
improving the system and fostering innovation.

Agile Management is about making the components of the Agile corporation
collaborate together towards anticipating changes and adapt smoothly and
flawlessly.
There are three most essential vectors:

• Collective Intelligence: which is key to address and control the increasing
complexity of organizations and businesses and based on having everyone in
the company taking part in the continuous improvement processes

• Optimal use of Technology : Technology is an amazing vector of efciency
in regards to tools supporting the organization

• A sound adoption of Continuous Improvement Processes : making the
organization identify and build on its strength while continuously addressing
its weaknesses to adapt itself continuously.

Agile Management values individual and interactions over formal processes and
hierarchy. It really consists in empowering people and making the organization a
place where they can develop themselves with passion and energy, leveraging their
capacity for both action and innovation.
Now of course this needs to be driven and Agile Management encourages
continuous feedback in the form, for instance, of O3s - One-On-One - on a regular
basis where both the employee and the manager can provide feedback on the
organization, respectively the performance of the employee.

Managing performance in this sense is identifying the strengths of the employee,
which we should leverage, and the weaknesses, which we should address and
improve.

Empowering people is a key practice since, at the end of the day, Management is too
important to be left to Managers ;-)
Agility is about adaptation but also about efciency and quality (think XP practices
here) and Agile Management is about putting practices in place aimed at making
engineers give the best they can and participate at every level in the success of the
company.

I would conclude this section by giving my favorite defnition of management:

"Hire great people, and then get the hell out of their way."

10 The Agile Methods Collection / Jerome Kehrli

1. Agile Landscape from Deloitte

1.5 Conclusion

This infographic is an awesome view of what we have achieved over the last 10 to
15 years in regards to understanding of how to design, engineer, build and manage
better.
I believe fnding better ways of working should be an everyday concern for
organizations, from startups to international corporations.

Quoting Jack Welsh:

"If the rate of change on the outside exceeds the rate of change on the inside, the
end is near."

My personal pick-up is:

• Lean (Startup) – See 5. The Lean Startup - A focus on Practices

• DevOps – See 3.2.3 DevOps

• XP, Scrum and Kanban (Agile Development) – See 2. Agile Software
Development, lessons learned and 3. Agile Planning : tools and processes

• Management 3.0 - Empowering and energizing people, Developing
competences, Aligning teams, Continuous Improvement

• Kaizen (of course)

I have no experience on Scaling Agile frameworks for now. It's becoming a pretty hot
topic in my current company though and I'll come back with a new article when I
have some.
My preference would go to LeSS I think, since it seems more natural to me. But that
is just a pretty initial opinion, and it may change ...

11 The Agile Methods Collection / Jerome Kehrli

http://www.ge.com/annual00/download/images/GEannual00.pdf

2. Agile Software Development, lessons learned

2. Agile Software Development, lessons
learned

After almost two years as Head of R&D in my current company, I believe I succeeded
in bringing Agility to Software Development here by mixing what I think makes most
sense out of eXtreme Programing, Scrum, Kanban, DevOps practices, Lean Startup
practices, etc.
I am strong advocate of Agility at every level and all the related practices as a
whole, with a clear understanding of what can be their benefts. Leveraging on the
initial practices already in place to transform the development team here into a state
of the art Agile team has been - and still is - one of my most important initial
objectives.
I gave myself two years initially to bring this transformation to the Software
Development here. After 18 months, I believe we're almost at the end of the road
and its a good time to take a step back and analyze the situation, trying to clarify
what we do, how we do it, and more importantly why we do it.

As a matter of fact, we are working in a full Agile way in the Software Development
Team here and we are having not only quite a great success with it but also a lot of
pleasure.
I want to share here our development methodology, the philosophy and concepts
behind it, the practices we have put in place as well as the tools we are using in a
detailed and precise way.
I hope and believe our lessons learned can beneft others.
As a sidenote, and to be perfectly honest, while we may not be 100% already there
in regards to some of the things I am presenting in this article, at least we have
identifed the gap and we're moving forward. At the end of the day, this is what
matters the most to me.

This article presents all the concepts and practices regarding Agile Software
Development that we have put (or are putting) in place in my current company and
gives our secrete recipe which makes us successful, with both a great productivity /
short lead time on one side and great pleasure and efciency in our every day
activities on the other side.

2.1 Agile Software Development

Agile Software Development and Agile methodologies form both an approach
regarding software development and a set of practices for managing and driving
software development projects.

12 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

Initially really intended solely for Software Development projects, these
methodologies can apply to a wide range of engineering felds.

Agile Methodologies have as origin the Agile Manifesto. Written in 2001, this
manifesto frst used the term of Agile to qualify some methods that were used for a
long time in various engineering felds.
The Agile Manifesto has been written by seventeen experts in the software
development business, mostly those already behind the eXtreme Programming
movement such as Kent Beck, Ward Cunningham or Martin Fowler.

2.1.1 Why Agile anyway ?

The experts behind the Agile Manifesto concluded long ago that the current
Waterfall methodologies such as RUP (Rational Unifed Process) were not adapted
anymore to today's challenges in regards to today's fast evolving organizations.

The problems with the traditional Waterfall approach can be summarized as follows:

• Incomplete or moving specifcation : no matter how smart the business
experts you are working with when writing specifcations, no matter the time
you dedicate to it, your specifcations will be incomplete, biased and wrong.
That comes from a very simple reason : it's impossible to imagine a solution
just right the frst time.
Business experts will change their mind once they see what comes frst out of
their inputs, always.
They need to see a frst version coming from their initial inputs and see it to
actually understand, with the help of the architects, what they really need.
Finding the actual solution to any business requirement or problem requires
iterations : a frst, as simple and stupid as possible version is required to help
the business understand what they really need. Then that solution needs to be
refned through several additional iterations.

• The tunnel efect : Think of a several years software development projects.
Business experts spend a few months specifying everything and then wait
three years before actually seeing it coming (wrong and buggy, needless to
say, but that is another story). In three years, business requirements would
have changed, evolved. And even if what was specifed three years ago was
greatly written and well thought out, now it's neither accurate nor relevant
anymore. We live in a very fast evolving world.

• Drop of Quality to meet deadlines : It's always the same, isn't it ? When
the deadline gets closer and the team needs to rush into fxing the issues that
arise from the frst batch of tests (always much bigger and far more numerous
than expected), when the initial feedback from the stakeholders or users come
and underlines how far the product is from what is required (which is not what

13 The Agile Methods Collection / Jerome Kehrli

http://agilemanifesto.org/

2. Agile Software Development, lessons learned

has been specifed of course), we all do the same : we drop quality, drop
testing, drop design and rush into trying to make it work.

• Heightened tensions between teams : so what do you think happens
when after several months (years) of development, that frst version is fnally
presented to the stakeholders and they realize that it's most defnitely not
what they need ? Everything turns ugly. The development team is angry
because they implemented the specifcations and yet they're told that the
software is not good, the stakeholders and business analysts are angry
because they do not understand why the dev team is so stubborn about
specifcation (and ashamed those were screwed), etc.

These problems most of the time lead to these consequences :

• Projects failure - slippage and inadequacy with actual needs make project
abandoned

• Exceed budget and deadline - sometimes up to ten times initial budget

• Lack of reactivity - business requirement change, project is delivered but
doesn't help business in the end

• Software inadequacies (functionalities, quality)

• Teams demotivation - try to convince an engineer he has to start all over again
once he is done developing something

• User dissatisfaction

2.1.2 Agile Development Value Proposition

The Manifesto for Agile Software Development uncovers better ways of developing
software by doing it and helping others do it.
It values individuals and interactions over processes and tools, working software
over comprehensive documentation, customer collaboration over contract
negotiation, and responding to change over following a plan.

Individuals and interactions over processes and tools

If processes and tools are seen as the way to manage product development and
everything associated with it, people and the way they approach the work must
conform to the processes and tools. Conformity makes it hard to accommodate new
ideas, new requirements, and new thinking. Agile approaches, however, value
people over process. This emphasis on individuals and teams puts the focus on
people and their energy, innovation, and ability to solve problems.

Working software over comprehensive documentation

14 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

Developers should write documentation if that's the best way to achieve the relevant
goals, but that there are often better ways to achieve those goals than writing static
documentation.
Too much or comprehensive documentation would usually cause waste, and
developers rarely trust detailed documentation because it's usually out of sync with
code.

Customer collaboration over contract negotiation

No matter which development method is followed, every team should include a
customer representative (product owner in Scrum). This person is agreed by
stakeholders to act on their behalf and makes a personal commitment to being
available for developers to answer questions throughout the iteration. At the end of
each iteration, stakeholders and the customer representative review progress and
re-evaluate priorities with a view to optimizing the return on investment (ROI) and
ensuring alignment with customer needs and company goals.

Responding to change over following a plan

Adaptive methods focus on adapting quickly to changing realities. When the needs
of a project change, an adaptive team changes as well.
An adaptive team cannot report exactly what tasks they will do next week, but only
which features they plan for next month. When asked about a release six months
from now, an adaptive team might be able to report only the mission statement for
the release, or a statement of expected value vs. cost.

Summary

15 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

2.1.3 Scrum

Scrum - A Fundamental Shift

Scrum is a well-defned process framework for structuring your work in an Agile way.
Scrum consists in working in iterations, build cross-functional teams, appoint a
product owner and a Scrum master, as well as introducing regular meetings for
iteration planning, daily status updates and sprint reviews. The benefts of the Scrum
methodology are well understood: Less superfluous specifcations and fewer
handovers due to cross-functional teams and more flexibility in roadmap planning
due to short sprints. Switching your organization to use Scrum is a fundamental shift
which will shake up old habits and transform them into more efective ones.

Scrum consists in running the development with a tempo of two to four weeks
sprints. A sprint starts with a Sprint planning meeting where the whole development
team picks tasks from the product backlog until the sprint backlog is flled with
enough tasks to fulfll the capacity of the team. A sprint fnishes with a Sprint
retrospective meeting where performance is evaluated and the sprint whereabouts
are discussed.
Within the sprint, the development team meets everyday at the daily scrum to
discuss everyone's tasks and activities.
At the end of the sprint, the development team delivers a production-ready software
that is potentially shippable.

While from a sprint to another, priorities can change completely, the priorities, scope
and duration of a sprint can never change !
This is an important aspect of the Scrum framework and ensures serenity of the
team.

16 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

Scrum leverages Commitment as Change Agent

The initial introduction of Scrum is not an end in itself. Working with Scrum, one
wants to change the teams' habits: Take more responsibility, raise code quality,
increase speed. As the teams commit to sprint goals, they are intrinsically motivated
to get better and faster in order to deliver what they promised. Scrum leverages
team commitment as change agent.

2.1.4 Kanban

Kanban - Incremental Improvements

The Kanban methodology is way less structured than Scrum. It's no process
framework at all, but a model for introducing change through incremental
improvements. One can apply Kanban principles to any process one is already
running.
In Kanban, one organizes the work on a Kanban board. The board has states as
columns, which every work item passes through - from left to right. One pull work
items along through the [in progress], [testing], [ready for release], and [released]
columns (examples). And you may have various swim lanes - horizontal spipeliness
for diferent types of work.
The only management criteria introduced by Kanban is the so called sWork In
Progresss or WIP. By managing WIP you can optimize flow of work items. Besides
visualizing work on a Kanban board and monitoring WIP, nothing else needs to be
changed to get started with Kanban.

17 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

2.1.5 Prerequisites : XP !

Agile methodologies leverage eXtreme Programing practices. A sound understanding
of XP practices and their rigorous application is a mandatory prerequisite of Agile
methodologies.

While some practices are applied sometimes a little diferently in scrum, really all of
them are important. XP Practices are really intended to be respected all together
since they have interactions and one cannot beneft from the advantages of XP if
one's picking up only a subset of the practices.
Some XP Practices should really be respected as described and advocated by XP :

• Metaphor

• Refactoring

• Simple Design

• TDD (Testing)

• Coding Standards

• Collective Ownership

• Continuous Integration

While some others take a specifc form in Scrum :

• Onsite Customer → Product Owner and his everyday communications with
stakeholders

• Sustainable Pace → Immutable and frozen Sprints

• Planning Game → Sprint planning

• Small Releases → Shippable product at the end of every sprint

• Whole Team → Daily Scrum

Interactions between XP practices can be represented this way:

18 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

I didn't mention Pair programming ... To be honest we do not apply it consistently in
my team. While I do certainly encourage pair programming when some specifc and
complicated algorithm or design needs to be implemented, I do not insist on it and
most of the time my developers work on their own.
From there, how can we ensure every single line of code is reviewed by at least a
second pair of eyes ?
We do enforce Code Review as part of our testing process. I'll get back to that.

2.1.6 Benefts : DevOps, Lean Startup

Adoption of an Agile Development Methodology is the very ground on which many
other practices or principles are built, should a Tech Company or an IT Department
want to move forward towards more efciency, shorter lead times, better reactivity
and controlled costs.

To make it simple:

• Without a proper understanding and adoption of eXtreme Programming
values, principles and practices, moving towards Agile Software Development
will be difcult.

• Without Agility throughout the IT processes, both on the development side
(Agile) and on the Production side (DevOps), trying Lean Startup practices and
raising Agility above the IT Department will be difcult.

19 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

• Without a sound understanding of the Lean Startup Philosophy and practices
and a company-wide Agile process (such as a company wide Kanban),
transforming the company to an Agile Corporation will be difcult.

• Finally, only Agile Corporations can really imagine successfully achieving a
Digital Transformation

This can be represented as follows:

As shown on the above pyramid, a good adoption of sound DevOps and Lean Startup
practices itself is a prerequisite towards further transformations: from enterprise-
scale Lean-Agile development to ultimate Digital transformation of the company.
Well I guess developing these concepts should be the topic of another blog post.

2.2 Scrum roles

Arguably, a very important role involved in Scrum is the Stakeholder, as the
Stakeholders are the ones who have desires and needs, and are the reason the team
is developing the software in the frst place.

While the Stakeholders are the most important source of validation for the project,
the most important person on the Scrum Team is the Product Owner (PO).
The Product Owner works with the Stakeholders, represents their interests to the
team, and is the frst person held accountable for the team's success. The Product
Owner must fnd a result that will satisfy the Stakeholders' needs and desires.

The Product Owner provides direction and goals for the team, and prioritizes what
will be done.

20 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

In my current company, the stakeholders are reunited in a formal Product
Management Committee Meeting once per month and are weighted this way:

• Head of R&D - myself - 30%

• Head of Delivery - 30%

• Company founders and top executives - 20%

• Sales representatives - 20%

I myself, as Head of R&D, ensure the role of Product Owner for what the
development team is concerned with. As a matter of fact, I ensure two roles :
Product Owner and Lead Architect.
Regarding architecture, I rely on two technical leaders in my team who help my with
this duty.

I would strongly recommend the reader takes 10 minutes to watch this Video from
Henrik Kniberg presenting pretty clearly end completely the role of Product Owner
and the functions of the Scrum Team around him : Agile Product Ownership in a
Nutshell - VOSTFR

The Scrum Master is an important role as well. The Scrum Master serves as a
facilitator for both the Product Owner and the team. The Scrum Master has no
authority within the team (thus couldn't also be the Product Owner!) and may never
commit to work on behalf of the team. Likewise, the Scrum Master also is not a
coordinator, because (by defnition) self-organizing teams should co-ordinate directly
with other teams, departments, and other external entities.

21 The Agile Methods Collection / Jerome Kehrli

https://www.youtube.com/watch?v=vkYEqz_MA5Y
https://www.youtube.com/watch?v=vkYEqz_MA5Y

2. Agile Software Development, lessons learned

The Scrum Master removes any impediments that obstruct a team's pursuit of its
sprint goals. If developers don't have a good sense of what each other are doing, the
Scrum Master helps them set up a physical taskboard and shows the team how to
use it. If developers aren't collocated, the Scrum Master ensures that they have
team room. If outsiders interrupt the team, the Scrum Master redirects them to the
Product Owner.

In my current company, the development team is a single team spread among two
locations. Half of the team is in Switzerland and the other half is a near shore team. I
have selected 2 persons, one in each location, to ensure the scrum master role in
both locations.
I defne their duties this way : they take care of making sure the team as a whole
sticks to the scrum process, raise warnings when I myself tend to compromise it,
facilitate communication issues between both locations, etc.
Having a dedicated scrum master in both locations is utmost important since
communication issues tend to be amplifed by remoting.

2.3 From Story Maps to Product Backlog

As an Agile team and increasingly an Agile Company, we strongly emphasizes Visual
Management Tools.

I think this is one of great strength in my current company: our understanding of
Lean management practices and the way we inspire our everyday rituals by the
Kaizen method : we try to learn and improve everyday, learn from our mistakes,
leverage on our strengths. We have weekly rituals where we discuss our processes,
the issues we encounter and we are agile in every way on the whole line, we adapt
the way we work, communicate and collaborate continuously to what we learn.

In my opinion, one of the most important aspects of Lean management is Visual
Management.
In this regards, I will focus in this article on two very important tools : The Story
Map and The Kanban Board.

2.3.1 User Stories

User stories are short, simple descriptions of a feature told from the perspective of
the person who desires the new capability, usually a user or customer of the system.

They typically follow a simple template:

As a <type of user>, I want <some goal> so that <some reason>.

User stories are often written on sticky notes and arranged on walls or tables to
facilitate planning and discussion.

22 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

As such, they strongly shift the focus from writing about features to discussing them.
In fact, these discussions are more important than whatever text is written.

It's the product owner's responsibility to make sure a product backlog of agile user
stories exists, but that doesn't mean that the product owner is the one who writes
them. Over the course of a good agile project, you should expect to have user story
examples written by each team member.
Also, note that who writes a user story is far less important than who is involved in
the discussions of it.

Some example stories for diferent application contexts:

Agile projects, especially Scrum ones, use a product backlog, which is a prioritized
list of the functionality to be developed in a product or service. Although product
backlog items can be whatever the team desires, user stories have emerged as the
best and most popular form of product backlog items.

2.3.2 Story Maps

User stories, when converted as Developer tasks in the product backlog, should be
very fnely defned and well documented.
But at the time of designing a product or an evolution, brainstorming around the
functionalities requires some abstraction and to remain at a very high functional
level.
It makes no sense at this initial stage to design fne and well documented tasks. One
should rather focus on identifying high level user stories covering each and every
expected functionality of the new software or evolution.

This is the purpose of the Story Mapping workshop. This is typically a few days
workshop organized as max 4 hours sessions per day where all the stakeholders
(this is important) take the time to sit in a room together and defne the product with
the help of User Stories.

23 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

Product Vision

But everything should really start by the defnition of Product Vision. The frst
session of a set of Story Mapping workshops should be the Vision Workshop where
everyone frst agrees on a common 2 to 3 years vision of the Experience Users will
have with the Product (or evolution, new feature, whatever).
Defning and agreeing on a vision is important since the vision:

• drives product decision - The vision should be complete and clear enough to
act as a reference one should be able to turn to in case of doubts regarding
where to move the product forward.

• provides a destination for the team to stay on course

• gets the entire team on the same page

• inspires and motivates

• aligns roadmap and sprint investments with user needs and business goals

• importantly : enables the product team to say sNO!s to features that don't
align with the vision.

The result of the product vision workshop should ft on a one page vision map, such
as for instance:

Story Map

With this frst step achieved, and a proper vision defne, the real job, defning User
Stories and laying them down on the Story Map can start. This is usually done in a
few session of 4 hours max.

24 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

The purpose of the Story Map is that arranging user stories into a helpful shape - a
map - is usually deemed as most appropriate.

A small story map might look something like this:

At the top of the map are sbig stories.s We call them themes. A theme is sort of a
big thing that people do - something that has lots of steps, and doesn't always have
a precise workflow. A theme is a big category containing actual user stories grouped
in Epics.

Epics are big user stories such as the one mentioned in example above. They usually
involve a lot of development and cannot be considered as is in an actual product
backlog. For this reason, Epics are split in a sub-set of stories, more precise and
concrete that are candidate to be put in an actual product backlog.

The big things on the top of the story map look a little like vertebrae. And the cards
hanging down look a little like ribs. Those big things on the top are often the
essential capabilities the system needs to have.
We refer to them as the sbackbones of the software.

The Walking Skeleton is composed by the epics of the software. The Walking
skeleton is a refnement of the backbone, composed by epics taking the form of user
stories, in diferent with themes that are rather very high level titles or sometimes
even simple words.

25 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

When it comes time to prioritize stories, we don't prioritize the backbone or the
walking skeleton. We do prioritize the ribs - the stories hanging down from the
backbone. We place them high to indicate they're absolutely necessary, lower to
indicate they're less necessary.
By doing this, we fnd that all the stories placed high on the story map describe the
smallest possible system you could build that would give you end to end
functionality. This is what Lean Startup calls the Minimum Viable Product.

A Minimum Viable Product has just those core features sufcient to deploy the
product, and no more. Developers typically deploy the product to a subset of
possible customers—such as early adopters thought to be more forgiving, more
likely to give feedback, and able to grasp a product vision from an early prototype or
marketing information.
This strategy targets avoiding building products that customers do not want and
seeks to maximize information about the customer per dollar spent. The Minimum
Viable Product is that version of a new product a team uses to collect the
maximum amount of validated learning about customers with the least
efort.

2.3.3 From User stories to Developer Tasks

While a product backlog can be thought of as a replacement for the requirements
document of a traditional project, it is important to remember that the written part
of an agile user story (sAs a user, I want ...s) is incomplete until the discussions
about that story occur.

It's often best to think of the written part as a pointer to the real requirement. User
stories could point to a diagram depicting a workflow, a spreadsheet showing how to
perform a calculation, or any other artifact the product owner or team desires.

26 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

The simplest way to state this is as follows :
User Stories are what users do to reach their goals.
Developer tasks are what developers do to implement user stories.
Transforming a User Story to Story with Specifcation has to be done by the Product
Owner and the Technical Architect of the platform (so two times myself in our case).
The Product Owner may need to get in touch with the stakeholders to get some
precisions in case there are doubts in regards to the User Experience to be
presented to the end users.

The Story with specifcation should contain, at least, in a non-exhaustive way :

• The initial user story and all that was expressed at that time

• A complete description of the purpose of the feature

• A complete description of the expected behaviour from all perspectives : user,
system, etc.

• Mock-ups of screens and front-end behaviours as well as validations to be
performed on the front-end

• A list and description of all business rules

• A list and description of the data to be manipulated

• Several examples of source data or actions and expected results

• A complete testing procedure

Then, the Story with specifcation is decomposed in Developer Tasks either in
advance by the Architect of the platform (well myself again) or at the latest by the
whole team during the Sprint Planing meeting.

2.4. From User Stories to Releases

We fnd a story map hung as an information radiator becomes a constant point of
discussion about the product we're building. When the project is running, it becomes
our sprint or iteration planning board. We identify or mark of stories to build in the
next iteration directly on the map. During the iteration we'll place just the stories
we're working on into a task wall to managing their development - but the story map
lives on the planning wall reminding us what the big picture is, and how far we've
come.

When we're building software incrementally, story by story, we'll choose them from
the story map left to right, and top to bottom. We'll slowly move across the
backbone, and down through the priorities of each rib. We're slowly building up the
system not a feature at a time, but rather by building up all major features a little at
a time. That way we never release a car without brakes.

27 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

2.4.1 Composing our releases

With the help of the story map and a clear classifcation of our User Stories in terms
of importance and priority. We try to plan for our releases, grouping together
features that require to be delivered consistently.
Grouping these feature together is usually done in a another workshop that we call
the roadmap workshop. When we have identifed a set of stories that defnitely
belong together, we group them horizontally so that we can identify releases by
horizontal boxes, for instance as follows:

Among these releases, the Minimum Viable Product release is the most important
one. A great care should be taken when composing this release to respect the
defnition of the Minium Viable Product indicated above.

One should note, we really use the story map releases as initial plan. In practice, real
releases difer a lot from our plans, always. We more or less release when some
features we were working on become urgently required for a customer.
Long story short, the release we plan initially give us a long term vision, a direction.
But reality difer a lot and we do usually many more releases that what we planned
initially.

Once we know what our release will be composed for, we're left with composing our
sprints.

Then, we release either because we have reached what we initially intended to be
part of the release, but that never happens in practice. In reality, we release more

28 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

often, simply when a set of features implemented in a sprint are required by a
customer.
Since every sprint fnishes with a shippable, production-ready product, this is
perfectly fne. We'll get back to this at the end of this paper.

2.4.2 Composing the sprint

The priorities coming from the release planning on the story map of its vertical scale
are too coarse-grained to be used to prioritize tasks when composing the next sprint.
We need a better way to fne tune the task priorities when stories are split to tasks in
the product backlog.
Since we are using redmine to manage our tasks and sprints - along with some
redmine plugins for Agile projects - we make use of the redmine notion of priority
for this concerns. When a task coming from a story is put in the backlog, it inherits
from the priority of the user story induced by the position of the story on the Story
Map. This is a notion of initial priority.
Later, as Product Owner, when I have all my tasks for a given release in the backlog,
I change priorities for much fner notions by still respecting the workflow induced by
the Story Map.

In addition, we use task priorities in a somewhat specifc way for Internal R&D
Organization to have a way to select task when composing our sprints.
We classify priorities depending on the moment of the release development when
we want to implement them - high priority tasks are implemented frst - Normal
tasks are implemented last, etc. This is a principle. The Urgent priority is reserved
for R&D for a specifc purpose:

• Urgent tasks are the candidates to be picked up in the next sprint, and only
them

• Whenever we are out of Urgent tasks, an election process is run and tasks in
High priority are elected to Urgent. This way they become candidate that can
be picked up in next sprint

Backlog priorities between [high, normal, low, unprioritized] are set in good
understanding with PMC (Product Management Committee)
[urgent] priority is reserved for R&D only to defne candidates to be taken in the
next sprint.

29 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

The process is iterative : when we are out of Urgent tasks, we re-prioritize the
backlog again and elect some new urgent tasks from the high tasks or even lower
priorities. We keep doing that over and over again until we have no more tasks of
lesser priorities and the set of urgent tasks can be fnished in 1 or 2 sprints.

2.4.3 Estimations in Story Points

In waterfall, managers determine a team member's workload capacity in terms of
time. Managers ask selected developers to estimate how long they anticipate certain
tasks will take and then assign work based on that team member's total available
time. In waterfall, tests are done after coding by specifc job titles rather than written

30 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

in conjunction with the code.
The downsides of waterfall are well known: work is always late, there are always
quality problems, some people are always waiting for other people, and there's
always a last minute crunch to meet the deadline. Scrum teams take a radically
diferent approach.

• First of all, entire Scrum teams, rather than individuals, take on the work. The
whole team is responsible for each Product Backlog Item. The whole team is
responsible for a tested product. There's no smy works vs. syour work.s So we
focus on collective efort per Product Backlog Item rather than individual efort
per task.

• Second, Scrum teams prefer to compare items to each other, or estimate
them in relative units rather than absolute time units. Ultimately this
produces better forecasts.

• Third, Scrum teams break customer-visible requirements into the smallest
possible stories, reducing risk dramatically. When there's too much work for 7
people, we organize into feature teams to eliminate dependencies.

Planning Poker

Planning poker, also called Scrum poker, is a consensus-based, gamifed technique
for estimating, mostly used to estimate efort or relative size of development goals
in software development.
In planning poker, members of the group make estimates by playing numbered
cards face-down to the table, instead of speaking them aloud. The cards are
revealed, and the estimates are then discussed. By hiding the fgures in this way,
the group can avoid the cognitive bias of anchoring, where the frst number spoken
aloud sets a precedent for subsequent estimates.

The cards in the deck have numbers on them. A typical deck has cards showing the
Fibonacci sequence including a zero: 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89; other decks
use similar progressions.

The reason to use planning poker is to avoid the influence of the other participants.
If a number is spoken, it can sound like a suggestion and influence the other
participants' sizing. Planning poker should force people to think independently and

31 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

propose their numbers simultaneously. This is accomplished by requiring that all
team members disclose their estimates simultaneously. Individuals show their cards
at once, inspiring the term splanning poker.s

In Scrum these numbers are called Story Points - or SP.

What does the process of estimation look like?

The actual estimations in SP, those on which the development team as whole
commits and agrees are set during the Sprint Planing meeting, all together. This is
the only way. No one single person can decide of the estimation in SP of any given
task.
However, a way to estimate the whole workload of a release backlog or even a long-
term backlog is required.

This is the reason why, the Product Owner and The Architect meet once in a while -
not in our case since I ensure both roles - to provide an initial estimation in SP on
all the tasks and stories (or even epics) in the release and long term backlogs.
These are initial estimations having as only purpose the need to estimate workloads
of future releases. before the sprint planning meeting occurs, these initial
estimations are removed in order not to influence the development team who will
have to provide the real estimations.

Filling the sprint

During the Sprint Planing meeting, we take the developer tasks with the highest
priority from the next release backlog and put them in the sprint backlog (these
diferent backlogs are introduced below).
The whole team gathers in a room and takes all tasks sorted by priority, evaluates
them - gives them an estimation in SP - discusses all their aspects, makes sure
they're crystal clear to everyone and fnally moves them to the sprint backlog.

The question is : when should we stop? When do we have enough tasks in the sprint
backlog to form the next sprint?

And the answer is simple : we stop when the set of tasks in the sprint backlog have a
sum of SP that match the Team Capacity, also expressed in SP.

The Team Capacity is computed by taking the average sum of SP implemented in a
set of frst sprints, when the team is constituted or when new engineers join it. It
takes a few sprints to be able to compute a relevant average. As a sidenote, funnily
enough, in my current company, the capacity of the development team is precisely (i
mean precisely !) in its current form.
During these frst sprints, when the team capacity is unknown, I believe the simplest
way is to start with an empty sprint backlog and simply let developers take tasks
from the release backlog, moving every task to the sprint backlog before working on
them. But others have other ideas ...

32 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

2.5. Introducing our sprints

We run sprints of two weeks in my current company. Two weeks is really what works
the best in our setup. One week would obviously be too short and three weeks would
make it impossible to close all the tasks in one single Testing Friday (see below).
In addition, in a continuous delivery approach (or I should rather say, as close to
Continuous Delivery as we can get), more than two weeks between deliveries would
be too much.

We do not necessarily stick 100% to the scrum process in the sense that we accept
urgent tasks in the sprint even after it has been started. The only reason for that is
urgent fxes required in production cannot wait more than a few hours. Urgent
production issues are the single and only reason we accept to change a little the
scope of our sprints even after they have started.
This requires some arbitration : a production issue at a customer needs to be
qualifed as urgent to make it to the current sprint, otherwise it goes in the next
sprint.

We have formal rituals at the beginning of the sprint and at the end of the sprint.

2.5.1 Before Sprint

Before the sprint, The Head of R&D, a.k.a myself, estimates new tasks by himself.
These are so called initial estimations as indicated above.
In addition, the Monday of a new sprint I take care of all the technical concerns
around the sprint (sprint creation on redmine, closing tasks, closing former sprint,
etc.).

Sprint Planning Meeting

During the Sprint Planning meeting :

• We re-estimate the tasks and come up with actual estimations

• We feed the sprint backlog with urgent tasks that have an estimation set in
terms of SP. Only these tasks are valid candidates to be put in the sprint
backlog.

• We feed the backlog in order to have a total amount of SP corresponding to
our average capacity

2.5.2 During Sprint

Every developer is free to pick up any task he wants from the Sprint backlog when
he is done with his former task. I myself try to intervene as little as possible in
regards to who works on what. This works only if developers are responsible and

33 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

autonomous. Another team may require more involvement from the team leader in
regards to tasks assignment.

Again, we try as much as possible to avoid changing the sprint scope during the
sprint. However this might happen. In this case, whenever we have to add some
very urgent tasks in the backlog during the sprint to work on it automatically, we
respect the following principle :

• We frst estimate this task all together after daily scrum

• We put the task in the backlog and remove as many other tasks it is required
to remove to leave the total amount in terms of SP of the sprint unchanged

Should it happen that a developer himself takes a task from the release backlog and
puts it in the sprint, he needs to remove the initial estimations put by head of R&D
on tasks in release backlog so that we remember estimating it at next daily sprint.

At the end of the sprint : Testing Friday

Every last Friday of each sprint is Testing Friday.
At testing Friday, every developer at R&D turns into a tester. Everyone in R&D tests
former sprint(s) tasks and closed the subtasks. Tasks themselves are closed by
Product Owner, a.k.a Head of R&D, a.k.a Myself (or delegate), not by R&D engineers
directly.

Having developers turning into testers that day and testing each other tasks
themselves, as opposed to having a dedicated team of testers, actually has a
purpose.
I cannot stress enough how much I believe this is important. Having developers
tuning to testers a day per sprint and testing each-other's tasks really helps them
get a sense of responsibility. Being pissed of when write didn't test his task before
moving it to Done (or Testing Ready in our case) makes one test thoroughly his own
tasks before passing them forward. Struggling to understand how to test something
makes one document in details the test procedure on his own tasks. Etc.

Testing a task means :

• Running the documented testing procedure and ensuring everything works as
expected

• Reading the code and ensuring it matches the code and quality standards

• Testing the feature in other than expected conditions

• Assessing non-functional behaviours such as performance and robustness

34 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

2.5.3 After Sprint

After the sprint, we have two important sprint rituals : The Sprint retrospective
meeting and the Sprint Demo Meeting.

In addition, we take care of releasing the Demo VM of our platform. The Demo VM is
a virtual appliance that integrates each and every individual software component of
our platform and confgures them with some default confguration plus feeds them
with test data.
The Demo VM building scripts leave us with a Demo platform ready to be used, just
as if it was integrated at a customer by our teams of consultants.
The Demo VM building is completely automated and its a step towards continuous
delivery for us in the form of a continuous deployment. At the end of every
successful integration build, it is automagically built and deployed on a test virtual
server, enabling immediate feedback form our stakeholders.
At the end of a sprint, we release the latest built Demo VM for wide usage by our
sales representatives, consultants, etc.

At the end of the sprint, we also take great care of ensuring before building the last
Demo VM that all tests are passing:

• Unit tests (Commit Build)

• Integration tests (Nightly build)

• End-to-end UI tests (Selenium tests on Demo VM building)

The closer we get to the end of the sprint, the more carefully we monitor these
builds to ensure we don't have any issue building the Demo VM at the end of the
sprint.

Sprint retrospective meeting

We mostly do these things during the Sprint Retrospective:

• We review the few tasks that may not have been completely implemented and
that need to be partially postponed to the next sprint

• We compute the amount of SP done

• We discuss issues and things to be changed and create tasks for them
(refactorings, new unit / integration tests to be written, etc.)

• We discuss about issues encountered in the way the sprint was managed and
search for opportunities to improve

Sprint Demo Meeting

We mostly do 2 things during the Sprint Demo:

35 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

• We demonstrate new functionalities to our internal user representatives

• We take minutes of the meeting in the form of new tasks added to the backlog
or updates to existing tasks

2.6 Release Backlog and Sprint Backlog

Using redmine, we attach our tasks to releases. We defne as many releases as we
have planned on our roadmap. Redmine then presents us the tasks grouped by
releases frst, and then all tasks that have no releases defned, we call this last
backlog the long term backlog.
In addition, tasks attached to a version - which we use to identify sprints - are also
displayed in a specifc backlog.
In the end, it's really as if redmine presents us with diferent backlogs.

2.6.1 Diferent release backlogs, long term backlog, sprint
backlog ...

We use all this diferent backlogs as follows.

36 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

Sprint Backlog

The sprint backlog identifes the tasks the development team are going to work on
/ are working on in the current (or past) sprints. The sprint backlog is slockeds at the
end of the sprint and scloseds whenever each and every of its tasks are closed.

The Sprint backlog is the Immediate-term backlog, i.e. things we'll close in the 2
coming weeks.

Release backlogs

We have as many release backlogs as released planned. All the tasks that are not
assigned to a specifc planned release are part of the Long Term backlog. Such
tasks are typically assigned a release when the former releases are done and closed
and we plan the next releases.

The release backlogs are the Short-term backlogs, i.e things we'll close in the
coming months.

Long-term backlog

The long term backlog is composed by tasks of a lesser priority. Those that make
sense and we defnitely believe we should work on them, those that corresponds to
stories of the StoryMap or elements of the Roadmap, but that are not planned for
any nearby delivery or for which we haven't identifed any customer requirement so
far.

2.6.2 While being Agile

Now all of the above form a plan, gives us an objective and a direction. Having a
plan, keeping a direction is important. It enables the whole company to agree and
commit on a vision and business directions.

Yet we are agile, we stick to our vision, but we adapt the plan continuously. The
composition of our releases, our ideas, the priorities of the tasks and the way we
intend to group them in releases change all the time, almost every week to be
honest.

We already know what we are going to release and when we will release it for the
coming 18 months. But in one year, it is absolutely certain that we will have done it
completely diferently.
Because we adapt to market events and feedback and to customer requirements.

At the end of the day this is no big deal and has really only little importance. We are
Agile, meaning every sprint is closed by a production ready and shippable
version of our platform.

37 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

Taking the decision to assign a version number to these releases and roll them out in
production at some customer is a Product Management Decision, it's almost not
anymore a development concern.

At the end of the day, we have really only one single constraint to make it possible :
split big refactorings (technical epics) or large business epics in smaller tasks that
have to ft in a single sprint, whatever happens.
These tasks have to be completed by the end of the sprint, meaning being properly
closed, tested and 100% working.

For instance:

• Imagine we have to realize an important refactoring that would need weeks of
development to be completed. That refactoring is split in small tasks such as
[1. Put in place the framework], [2. Implement it in this package], [3.
Implement it in this other package, etc].
At the end of one sprint, it may well happen that the refactoring is only
partially realized. In this case we make it so that the platform works perfectly
even if half of the code is running on the former approach and only the other
half ot it has been migrated to the new way.

• As another example, imagine a brand new feature requires several dozens of
new screens which would take weeks to implement. Thanks to Feature
Flipping, we simply disable this feature in production while it is still in
development. The day we fnally fnish to implement it in a sprint, that end-of-
sprint release will fnally have the feature enabled and make it available to our
customer.

Long story short, we make it so that partially implemented features are either
working 100% from a functional perspective or properly hidden, in order not to
compromise User Experience on the platform

Again, all of that is possible because we have embraced eXtreme programming,
Agile as well as some DevOps and Lean Startup practices as our core set of
practices.

2.6.3 Handling customer requests and production concerns

Now all the above works great on the paper or when we develop a brand new
product, a completely new feature or technological evolution.
But it doesn't handle urgent customer requests or production concerns such as bug
fxes or other urgent and new requirements coming from our consultants or
customers.

We have a special way of handling such new features or bug fxes which takes the
form of a special tracker named wish.

38 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

These wishes are put in a special backlog, the wish backlog which is reviewed every
month by the Head of R&D (myself) and the Head of Delivery. Together, we discuss
these wishes defne priorities and transform them into actual development tasks put
in one of the backlog above, sometimes as close as the next Sprint backlog.

2.6.4 Sprint Kanban backlog management

While the Burndown chart is interesting to track the performance in comparison to
theory as well as delays or advance, I don't fnd it so useful in the end and really
seldomly use it.
I mean, it's interesting to have a clear visual indication of how the sprint is going and
where we stand in comparison with expected status of course, but it's too general.
While I can look at it once in a while to confrm a feeling of being late or in advance I
might have, it's really not the tool I'm using.

As a manager with a good understanding of what we need to do in every sprint as
well as the dependencies between tasks and the overall context of the sprint
whereabouts, I need a tool providing me a fleeting glimpse on every task's status
and the overall situation of the Sprint.
In this regards, a Kanban board is to me the sone ring to rule them alls tool.

We use redmine and the Agile plugin of redmine to manage our Kanban boards.
That plugin works is a pretty specifc way : the Kanban board shows tasks (and other
items) on the left and sub-tasks (in the redmine terminology) are the elements
passed between states. This is illustrated in the example below.
In our case, we manage stories and tasks in the backlog. As task never ever has

39 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

any subtask other than one entitled "Implementation of #1234" where 1234
is the ID of the parent task it belongs to.
That only sImplementations subtask is the visual artifce we use to track the status
of our tasks on the Kanban board.

Tasks have a release assigned when they are in release backlogs (not those in long-
term backlog). When a task is picked up during Sprint planning meeting, it gets in
addition a Target Version assigned. We use redmine's notion of Target version to
materialize our sprints.

Tasks assignment

A task is always assigned to the developer who did most work on it. It then stays
assigned to that developer forever. Should another developer take the task on, and
both agree that that second developer ended up doing more work, he can assign the
task to himself.

The subtasks (Implementation of ...) can be assigned to diferent developers when it
is passed from a developer to another one.
A In this case, the assignee of the main task (the parent) remains the developer who
did most work on it.
In addition, when a tester takes a subtask from sTesting Readys and puts in in
sTestings, he needs to assign the subtask to himself.

Tasks Status

The rules are simple:

• The main task can only have 2 states : sNews and sCloseds.

• We never move the mast tasks from sNews to sImplementations,
sImplementations to sTesting Readys, etc. We never touch the main
task.

• Only Head of R&D (myself) closes main tasks. sImplementations
subtasks are however closed by the tester.

• Main tasks are assigned as explained above to the main developer
working on the topic

• The subtask sImplementations is used to actually track the status

• The subtask is moved in the diferent status according the to state of
the job. It can also be re-assigned.

We use following statuses and rules:

40 The Agile Methods Collection / Jerome Kehrli

2. Agile Software Development, lessons learned

2.7 Conclusion

Adopting the set of practices described in this article really helped us not only to
adopt agility within the development team but also in all activities surrounding it.
The whole company got used to our ways and takes part in the process either by
taking an active part in the Product Management Committee to help defne the
user stories or simply by downloading the latest Demo VM at the end of every sprint.

In addition, as stated above, adopting Agile principles and practices are a ground
requirement towards adopting some DevOps or Lean Startup practices that really
help not only the efciency of the development team but really the company as a
whole by improving quality of the software and simply all our interactions with the
other teams or even the customers. In addition, they have been key to make us
shorten the lead time from ideas to production rollout of new features and our
responsiveness as a whole company.

While I can imagine that there can be situations where a standard waterfall approach
may make more sense, I haven't encountered any in my career. Project size is not an
argument there since Agility can be transposed to multiple team projects up to
several dozens of thousands of man days projects. This is called Scaling Agile with
dedicated framework such as SAFe - Scaled Agile Framework. I hope I'll have some
experience to share in this regards in another life.

41 The Agile Methods Collection / Jerome Kehrli

http://www.scaledagileframework.com/

3. Agile Planning : tools and processes

3. Agile Planning : tools and processes

All the work on Agility in the Software Engineering Business in the past 20 years,
initiated by Kent Beck, Ward Cunningham and Ron Jefries, comes from the fnding
that traditional engineering methodologies apply only poorly to the Software
Engineering business.

If you think about it, we are building bridges from the early stages of the Roman
Empire, three thousand years ago. We are building heavy mechanical machinery for
almost three hundred years. But we are really writing software for only ffty years.
In addition, designing a bridge or a mechanical machine is a lot more concrete than
designing a Software. When an engineering team has to work on the very initial
stage of the design of a bridge or mechanical machine, everyone in the team can
picture the result in his mind in a few minutes and breaking it down to a set of single
Components can be done almost visually in one's mind.

A software, on the other hand, is a lot more abstract. This has the consequence that
a software is much harder to describe than any other engineering product which
leads to many levels of misunderstanding.

The waterfall model of Project Management in Software Engineering really originates
in the manufacturing and construction industries.
Unfortunately, for the reasons mentioned above, despite being so widely used in the
industry, it applies only pretty poorly to the Software Engineering business. Most
important problems it sufers from are as follows:

• Incomplete or moving specifcation: due to the abstract nature of
software, it's impossible for business experts and business analysts to get it
right the frst time.

• The tunnel efect: we live in a very fast evolving world and businesses need
to adapt all the time. The software delivered after 2 years of heavy
development will fulfll (hardly, but let's admit it) the requirements that were
true two years ago, not anymore today.

• Drop of Quality to meet deadlines: An engineering project is always late,
always. Things are just a lot worst with software.

• Heightened tensions between teams: The misunderstanding between
teams leads to tensions, and it most of the time turns pretty ugly pretty quick.

So again, some 20 years ago, Beck, Cunningham and Jefries started to formalize
some of the practices they were successfully using to address the uncertainties, the

42 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/agile-software-development-lessons-learned#sec11
https://www.niceideas.ch/roller2/badtrash/entry/agile-software-development-lessons-learned#sec11
https://en.wikipedia.org/wiki/Waterfall_model
https://www.niceideas.ch/roller2/badtrash/entry/funny-developer-tale
https://www.niceideas.ch/roller2/badtrash/entry/funny-developer-tale

3. Agile Planning : tools and processes

overwhelming abstraction and the misunderstandings inherent to software
development. They formalized it as the eXtreme Programmingmethodology.

A few years later, the same guys, with some other pretty well known Software
Engineers, such as Alistair Cockburn and Martin Fowler, gathered together in a resort
in Utah and wrote the Manifesto for Agile Software Development in which they
shared the essential principles and practices they were successfully using to address
problems with more traditional and heavyweight software development
methodologies.

Today, Agility is a lot of things (See 1. Agile Landscape from Deloitte) and the set of
principles of practices in the whole Agile family is very large. Unfortunately, most of
them require a lot of experience to be understood and then applied successfully
within an organization.

Unfortunately, the complexity of embracing a sound Agile Software Development
Methodology and the required level of maturity a team has to have to beneft from
its advantages is really completely underestimated.
I cannot remember the number of times I heard a team pretending it was an Agile
team because it was doing a Stand up in the morning and deployed Jenkins to run
the unit tests at every commit. But yeah, honestly I cannot blame them. It is actually
difcult to understand Agile Principles and Practices when one never sufered from
the very drawbacks and problems they are addressing.

I myself am not an agilist. Agility is not a passion, neither something that thrills me
nor something that I love studying in my free time. Agility is to me simply a
necessity. I discovered and applied Agile Principles and practices out of necessity
and urgency, to address specifc issues and problems I was facing with the way my
teams were developing software.

The problem on which I am focusing on here is Planning. Waterfall and RUP focus a
lot on planning and are often mentioned to be superior to Agile methods when it
comes to forecasting and planning.
I believe that this is true when Agility is embraced only incompletely. As a matter of
fact, I believe that Agility leads to much better and much more reliable forecasts
than traditional methods mostly because:

• With Agility, it becomes easy to update and adapt Planning and forecasts to
always match the evolving reality and the changes in direction and priority.

• When embracing agility as a whole, the tools put in the hands of Managers
and Executive are frst much simpler and second more accurate than
traditional planning tools.

In this report, I intend to present the fundamentals, the roles, the processes, the
rituals and the values that I believe a team would need to embrace to achieve

43 The Agile Methods Collection / Jerome Kehrli

https://en.wikipedia.org/wiki/Agile_software_development#The_Agile_Manifesto
https://en.wikipedia.org/wiki/Extreme_programming

3. Agile Planning : tools and processes

success down the line in Agile Software Development Management - Product
Management, Team Management and Project Management - with the ultimate goal
of making planning and forecasting as simple and efcient as it can be.
All of this is a reflection of the tools, principles and practices we have embraced or
are introducing in my current company.

3.1 Introduction

As stated in my abstract above, embracing sound Agile principles and applying
relevant Agile practices is all but easy.
First, out of all the Agile methods available and described and the overwhelming set
of practices and principles, an organization needs to understand which makes sense
to it. Adopting a method, a set or principles or practices blindly, because the paper
said it was good, or because the Scrum Master believes it is state of the art makes
only little sense.
The set of methods described nowadays is pretty huge and unfortunately, each and
every of these practices make sense whenever a team, an organization or a whole
corporation sufers from a drawback or an issue it addresses or simply benefts from
its advantages.

The whole set of Agile methods along with their principles and practices are
brilliantly represented by Chris Web on the following infographic:

(Source : Christopher Webb - LAST Conference 2016 Agile Landscape -

44 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-
presentation-v1)

Junior teams should go with a base method that makes sense to it, such as Scrum or
Kanban while remembering that none of it makes sense without a strict
respect to the whole set of XP principles and practices.

More experienced teams will likely come up with their own methodology, cleverly
built from the principles and practices of several underlying methods.

Again, in my opinion XP is the most fundamental building block on which all
the rest is built, not a method among others.
I often read papers online presenting XP as one Agile Software Development Method
among others. My point of view is very diferent. I strongly believe - and experience
everyday - that XP proposes the fundamental principles and practices on which are
built all the other methods.
Without a thorough adoption of XP principles and practices, one cannot beneft from
the full advantages of Agility. In addition, some principles and practices proposes by
other methods such as DevOps, leverage on some XP principles and practices but
never voids them.

When explaining this, I like to recover this schema I wrote a few years ago when I
was doing consulting missions around Agility and Digital Transformation:

This reads as follows:

45 The Agile Methods Collection / Jerome Kehrli

https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Kanban_(development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1
https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1

3. Agile Planning : tools and processes

• Without a proper understanding and adoption of eXtreme Programming
values, principles and practices, moving towards Agile Software Development
will be difcult.

• Without Agility throughout the IT processes, both on the development side
(Agile) and on the Production side (DevOps), embracing Lean Startup practices
and raising Agility above the IT Department will be difcult.

• Without a sound understanding of the Lean Startup Philosophy and practices
and a company-wide Agile process (such as a company wide Kanban),
transforming the company to an Agile Corporation will be difcult.

• Finally, only Agile Corporations can really imagine successfully achieving a
Digital Transformation

But then again, referring to Chris Webb's Agile Landscape, picking up the practices
that make sense and have an added value in any context is the choice of every
organization. Every diferent mature agile organization will use a slightly diferent set
of practices than every other.

I will now be presenting the fundamental set of practices I deem important when it
comes to successfully embracing Agile Planning and Agile Software Development.

3.2 The Fundamentals

The set of practices I deem essential to embrace Agile Planning comes from the
following methods: XP, Scrum, Kanban, DevOps, Lean Startup and a lot of Visual
Management tricks.

3.2.1 eXtreme Programming

eXtreme Programming (XP) is the most fundamental software development method
from the Agile tree< that focuses on the implementation of an application, without
neglecting the project management aspect. XP is suitable for small teams with
changing needs. XP pushes to extreme levels simple principles.

The eXtreme programming method was invented by Kent Beck, Ward Cunningham,
Ron Jefries and Palleja Xavier during their work on the project C3. C3 was the
calculation of compensation project at Chrysler.
Kent Beck, project manager in March 1996, began to refne the development method
used on the project. It was ofcially born in October 1999 with Kent Beck's Extreme
Programming Explained book.

In the book Extreme Programming Explained, the method is defned as:

• An attempt to reconcile the human with productivity;

• A mechanism to facilitate social change;

46 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

• A way of improvement;

• A style of development;

• A discipline in the development of computer applications.

Its main goal is to reduce the costs of change. In traditional methods, needs are
defned and often fxed at the start of the IT project, which increases the subsequent
costs of modifcations. XP is committed to making the project more flexible and open
to change by introducing core values, principles and practices:

The principles of this method are not new: they have existed in the software industry
for decades and in management methods for even longer. The originality of the
method is to push them to the extreme:

• Since the code review is a good practice, it will be done permanently (by a
binomial);

• Since the tests are useful, they will be done systematically before each
implementation;

• Since the design is important, it will be done throughout the project
(refactoring);

• Since simplicity makes it possible to advance faster, we will always choose the
simplest solution;

• Since understanding is important, we will defne and evolve metaphors
together;

• Since the integration of the modifcations is crucial, we will do it several times
a day;

• Since the needs evolve rapidly, we will make cycles of development very rapid
to adapt to the change.

47 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

The practices listed by the eXtreme Programming method form the fundamental
Software Engineering Practices of Agility.
Interestingly, one cannot pick up a subset of these practices and believe that it
should work. Kent Beck uses the following schematic to illustrate how these
practices work together and depend on each others:

48 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

All of this makes a lot of sense if you think of it: doing refactorings without TDD
would be suicidal, Continuous Integration without TDD as well, Testing without
simple design is complicated, Simple Design is enforced by TDD, etc.

3.2.2 Scrum

Scrum is a schematic organization of complex product development. It is defned by
its creators as an "iterative holistic framework that focuses on common goals by
delivering productive and creative products of the highest possible value"

This organizational scheme is based on the division of a project into time boxes,
called "sprints". A sprint can last between a few days and a month (with a
preference for two weeks).
Each sprint starts with an estimate followed by operational planning. The sprint ends
with a demonstration of what has been completed.
Before starting a new sprint, the team makes a retrospective. This technique
analyzes the progress of the completed sprint, in order to improve its practices
(Continuous Improvement / Kaizen).
The work flow of the development team is facilitated by its self-organization, so
there should be no formal Project Manager but a Team Leader instead with a
coaching role more than a management role.

The Scrum process can be represented as follows:

Some more information about scrum is available here : 2.1.3 Scrum.

49 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Working with Story Points

In waterfall, managers determine a team member's workload capacity in terms of
time. Managers ask selected developers to estimate how long they anticipate certain
tasks will take and then assign work based on that team member's total available
time. In waterfall, tests are done after coding by specifc job titles rather than written
in conjunction with the code.
The downsides of waterfall are well known: work is always late, there are always
quality problems, some people are always waiting for other people, and there's
always a last minute crunch to meet the deadline. Scrum teams take a radically
diferent approach.

• First of all, entire Scrum teams, rather than individuals, take on the work. The
whole team is responsible for each Product Backlog Item. The whole team is
responsible for a tested product. There's no smy works vs. syour work.s So we
focus on collective efort per Product Backlog Item rather than individual efort
per task.

• Second, Scrum teams prefer to compare items to each other, or estimate
them in relative units rather than absolute time units. Ultimately this
produces better forecasts.

• Thirdly, Scrum teams break customer-visible requirements into the smallest
possible stories, reducing risk dramatically. When there's too much work for 7
people, we organize into feature teams to eliminate dependencies.

Planning poker, also called Scrum poker, is a consensus-based, gamifed technique
for estimating, mostly used to estimate efort or relative size of development goals
in software development.
In planning poker, members of the group make estimates by playing numbered
cards face-down to the table, instead of speaking them aloud. The cards are
revealed, and the estimates are then discussed. By hiding the fgures in this way,
the group can avoid the cognitive bias of anchoring, where the frst number spoken
aloud sets a precedent for subsequent estimates.

The cards in the deck have numbers on them. A typical deck has cards showing the
Fibonacci sequence including a zero: 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89; other decks
use similar progressions.

50 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

The reason to use planning poker is to avoid the influence of the other participants.
If a number is spoken, it can sound like a suggestion and influence the other
participants' sizing. Planning poker should force people to think independently and
propose their numbers simultaneously. This is accomplished by requiring that all
team members disclose their estimates simultaneously. Individuals show their cards
at once, inspiring the term splanning poker.s

In Scrum these numbers are called Story Points - or SP.

3.2.3 DevOps

DevOps is a methodology capturing the practices adopted from the very start by the
web giants who had a unique opportunity as well as a strong requirement to invent
new ways of working due to the very nature of their business: the need to evolve
their systems at an unprecedented pace as well as extend them and their business
sometimes on a daily basis.

DevOps is not a question of tools, or mastering chef or docker. DevOps is a
methodology, a set of principles and practices that help both developers and
operators reach their goals while maximizing value delivery to the customers or the
users as well as the quality of these deliverables.

The problem comes from the fact that developers and operators - while both
required by corporations with large IT departments - have very diferent objectives.

51 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

DevOps consists mostly in extending agile development practices by further
streamlining the movement of software change thru the build, validate, deploy and
delivery stages, while empowering cross-functional teams with full ownership of
software applications - from design thru production support.

DevOps encourages communication, collaboration, integration and
automation among software developers and IT operators in order to improve both
the speed and quality of delivering software.

DevOps teams focus on standardizing development environments and automating
delivery processes to improve delivery predictability, efciency, security and
maintainability. The DevOps ideals provide developers more control of the
production environment and a better understanding of the production infrastructure.

DevOps encourages empowering teams with the autonomy to build, validate, deliver
and support their own applications.

DevOps is a revolution that aims at addressing the wall of confusion between
development teams and operation teams in big corporations having large IT
departments where these roles are traditionally well separated and isolated.

So what are the core principles ?

52 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

These principles and practices are presented in details in 4. DevOps explained.

3.2.4 Lean Startup

Some years ago, Eric Ries, Steve Blank and others initiated The Lean Startup
movement. The Lean Startup is a movement, an inspiration, a set of principles and
practices that any entrepreneur initiating a startup would be well advised to follow.

53 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

In my opinion, the most fundamental aspect of Lean Startup is the Build-Measure-
Learn loop.
The fundamental activity of a startup is to turn ideas into products, measure how
customers respond, and then learn whether to pivot or persevere. All successful
startup processes should be geared to accelerate that feedback loop.

The fve-part version of the Build-Measure-Learn schema helps us see that the real
intent of building is to test "ideas" - not just to build blindly without an objective.
The need for sdatas indicates that after we measure our experiments we'll use the
data to further refne our learning. And the new learning will influence our next
ideas. So we can see that the goal of Build-Measure-Learn isn't just to build things,
the goal is to build things to validate or invalidate the initial idea.

The four steps to the Epiphany

Shortly put, Steve Blank proposes that companies need a Customer Development
process that complements, or even in large portions replaces, their Product
Development Process. The Customer Development process goes directly to the
theory of Product/Market Fit.
In sThe four steps to the Epiphanys, Steve Blank provides a roadmap for how to get
to Product/Market Fit.

The four stages the Customer Development Model are: customer discovery,
customer validation, customer creation, and company creation.

1. Customer discovery: understanding customer problems and needs

54 The Agile Methods Collection / Jerome Kehrli

https://en.wikipedia.org/wiki/Product/market_fit

3. Agile Planning : tools and processes

2. Customer validation: developing a sales model that can be replicated

3. Customer creation / Get new Customers: creating and driving end user
demand

4. Customer building / Company Creation: transitioning from learning to
executing

We can represent them as follows:

the most essential principles and practices introduced and discussed by the Lean
Startup approach are added to the schema above.

These principles and practices are discussed in length here : 5. The Lean Startup - A
focus on Practices.

3.2.5 Visual Management and Kanban

Visual Management is an English terminology that combines several Lean
management concepts centered on visual perception. The aim is to put the
information and its context in order to make the work and the decision-making
obvious.

Visual Management is an answer to the well known credo "You can't manage what
you can't see". It fnds its root in Obeya War Rooms:

55 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

(Source : http://alexsibaja.blogspot.ch/2014/08/obeya-war-room-powerful-
visual.html)

Obeya (from Japanese "large room" or "war room") refers to a form of project
management used in many Asian companies, initially and including Toyota, and is a
component of lean manufacturing and in particular the Toyota Production System.
During the product and process development, all individuals involved in managerial
planning meet in a "great room" to speed communication and decision-making. This
is intended to reduce "departmental thinking" and improve on methods like email
and social networking. The Obeya can be understood as a team spirit improvement
tool at an administrative level.

Nowadays, visual management is very much linked to Lean Management and Lean
Startup, but IMHO it's really a feld on its own. In the feld of Agile Planning, I
believe that Visual Management with sound tools and approaches is not optional.
At the end of the day, as we ill see, a good Project Management tool is a tool than
enables anyone in the company to understand what is achievable in a given time or
what time is required to deliver a given scope within a few minutes. And nothing
competes with Visual Tools in this regards.

I will introduce here the fundamental tools I believe an Agile team should consider
when it comes to Visual Management:

3.2.5.1 Story Map

The purpose of the Story Map is that arranging user stories into a helpful shape - a
map - is usually deemed as most appropriate.
A Story Map is a visual management tool aimed at presenting the situation of the
Software or the features to be implemented in a clear and graphical way. A Story
Map is composed by user stories (see below).

56 The Agile Methods Collection / Jerome Kehrli

http://alexsibaja.blogspot.ch/2014/08/obeya-war-room-powerful-visual.html
http://alexsibaja.blogspot.ch/2014/08/obeya-war-room-powerful-visual.html

3. Agile Planning : tools and processes

A small story map may look like something like this:

At the top of the map are sbig stories.s We call them themes. A theme is sort of a
big thing that people do - something that has lots of steps, and doesn't always have
a precise workflow. A theme is a big category containing actual user stories grouped
in Epics.

Epics are big user stories such as the one mentioned in example above. They usually
involve a lot of development and cannot be considered as is in an actual product
backlog. For this reason, Epics are split in a sub-set of stories, more precise and
concrete that are candidate to be put in an actual product backlog.

I presented more information on Story Maps here : 2.3.2 Story Maps.
For the moment, let's just remember that there is an important notion of priority on
the vertical scale: the lower a story, the lesser its priority.
There is also a les obvious notion of priority horizontally: stories on the left should be
implemented frst since they have a greater value than the stories on the right, but
all of that of course with respect of the more important vertical priority.
Long story short: the development team needs to implement all the stories of a row,
from left to right, before it can consider the stories of the next row.

An pretty good and straightforward example of a Story Map related to an email
client application:

57 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

And a real world example built during an real life Workshop:

(Copyright OCTO Technology / Unfortunately I haven't been able to recover the
source)

58 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

A story Map is usually a visual tool, laid down on the wall of a shared meeting room
or even the development team open-space. Distributed teams may consider digital
tools but a physical, real and visual map on a wall is way better.

3.2.5.2 Product Backlog

The product backlog is the tool used by the Development tool to track the tasks to
be implemented. These development tasks should be linked to a User Story on the
Story Map.
As such, the product backlog should be seen as a much more detailed and technical
version of the Story Map.

The product backlog shows the same releases than the Story Map. The development
tasks in the current sprints should have a more detailed form than the development

59 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

tasks not analyzed yet during Sprint Planning.
In a general way, the product Backlog should be kept synchronized with the Story
Map and the reverse is true as well. Every User Story on the Map is broken down in
development tasks in the Product Backlog and all tasks in the backlog should be
attached to a User Story on the Map.

Their diference is as follows:

• Story Map : The Story Map is a management tool. It is a visual tool used by
the Product Management Team to drive the high level development of the
product and to defned releases and priorities.

• Product Backlog : The product Backlog is a technical project management
tool, not a visual management tool. Its is usually supported by a digital tool
(such as Jira or Redmine) and aims at organizing at a fne level the
development team activities.

Some important constraints should be noted right away:

• Each and every developer activity, not matter how quick and small, should be
well identifed by a development task in the product backlog.

• Each and every development task should be linked to a User Story on the
Story Map. I cannot stress enough how much this is important.

3.2.5.3 Kanban Board

Kanban is model for introducing change through incremental improvements. One
can apply Kanban principles to any process one is already running.

In Kanban, one organizes the work on a Kanban board. The board has states as
columns, which every work item passes through - from left to right. One pull work
items along through the [in progress], [testing], [ready for release], and [released]
columns (examples). And you may have various swim lanes - horizontal spipeliness
for diferent types of work.
The only management criteria introduced by Kanban is the so called sWork In
Progresss or WIP. By managing WIP you can optimize flow of work items. Besides
visualizing work on a Kanban board and monitoring WIP, nothing else needs to be
changed to get started with Kanban.

60 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Kanban boards can be mixed with Story Maps to follow the development of the tasks
scheduled for next releases as far as their delivery on the current development
version of the product.
In this case, the left-most column of the Kanban board becomes the Story Map
containing the Stories to be developed while the right-most column of the Kanban
board contains the User Stories identifying features already provided by the product.

I myself call such a mix of Story Map and Kanban a Product Kanban Board.

An real-world example of such a mix of Story Maps and Kanban boards could be as
follows:

3.2.5.4 User Stories

User stories are short, simple descriptions of a feature told from the perspective of
the person who desires the new capability, usually a user or customer of the system.

They typically follow a simple template:

As a <type of user>, I want <some goal> so that <some reason>.

61 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

User stories are often written on sticky notes and arranged on walls or tables to
facilitate planning and discussion.
As such, they strongly shift the focus from writing about features to discussing them.
In fact, these discussions are more important than whatever text is written.

It's the product owner's responsibility to make sure a product backlog of agile user
stories exists, but that doesn't mean that the product owner is the one who writes
them. Over the course of a good agile project, you should expect to have user story
examples written by each team member.
Also, note that who writes a user story is far less important than who is involved in
the discussions of it.

Some example stories for diferent application contexts:

User Stories are used to track existing features as well as features to be developed
on a mix of Story Map and Kanban, the Product Kanban Board.

3.3. Principles

Having covered the fundamentals, we will now go through the principles required for
Agile Planning and see how the principles and practices introduced in the previous
section should be used to achieve reliable forecasts and planning with Agile
methodologies.

We should now discover:

• The tools, mostly visual management tools that the organization should
adopt.

• The Organization to be put in place with required roles and committees.

62 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

• The processes that should be respected and that will lead to accurate
estimations and forecasts.

• The Rituals supporting the processes.

• The Values the team has to embrace to successfully run the processes and
deploy the required practices.

3.3.1 The tools

The tools that the organization should adopt are as follows:

I believe that I introduced these tools in length in the section 3.2.5 Visual
Management and Kanban so I won't be adding a lot. We will see in the next section
related to processes how these tools are used and how they complement each other
by addressing diferent needs.

3.3.2 The Organization

The organization to put in place consists in identifying roles as well as committees
and teams.

63 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

3.3.2.1 Required roles

The required roles are as follows:

• Team Leader : The Team Leader animates the Team rituals (such as Sprint
Planning, Sprint Retrospective, Daily scrum) and acts as a coach and a mentor
to the development team. He is not a manager, he is a leader (Lead by
Example, Management 3.0, etc.). He also represents the development team in
other rituals (PMC).
At the end of the day, the Team Leader should not be made responsible for
neither the team successes nor the team failures, the whole team should be
accountable for this.
If the team leader is solely responsible for the Team's performance, then we
will be tempted to shortcut quality or mess some rituals to speed up the pace
and successfully respect some artifcial deadline or else. When that is the
case, the team requires a Scrum Master who should guarantee the Scrum
rituals and processes are well respected.
In my opinion it makes a lot more sense to avoid such situation by making
sure everyone in the team is accountable for the team performance and also
responsible for the proper respect of the defned Agile processes and rituals. In
this case, the Team Leader becomes an arbitrator, a facilitator, a coach and a
support, not a manager. At the end of the day, management is too important
to be left to managers ;-)

• Architect : The Architect (or architects) should be the most experienced
developer(s), the one(s) with the biggest technical and functional knowledge.
There can be several architects, a lead architect, a technical architect, etc.
This doesn't really matter.
The important thing is that the architect should be entitled to take architecture
decision by still referring to the whole team as much as possible. The architect
leads the Architecture Committee where architecture decisions are taken.
The architect, with the help of the tech leads, provides guidance and support
to developers. he is also responsible to check the Code Quality, leading the
code reviews, and ensure the sticking to Code conventions, etc.

• Tech Leads and Developers : The tech leads and developers form the core
of the development team, they eventually develop the software.

64 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Tech Leads are coaches and supports to developers and represent them in the
Architecture Committee.

• Product Owner : The product Owner represents the stakeholders and drives
priorities in good understanding with the market and customer needs. He is
not a leader, he is an arbitrator and acts as the bridge between the business
requirements and the development team.
I can only recommend the reader to watch the magnifcent video sAgile
Product Ownership in a Nutshells from Henrik Kniberg.

• Business representatives : Business representatives (sales, customers,
etc.) have to be involved in the Product Management Committee by the
product Owner whenever required.

Why bother ?

Roles are required mostly for two reasons : efciency and focus:

• Efciency: roles are required to avoid having the whole organization meeting
all the time at every meeting for every possible concern.

• Focus: every role owner should acts as required by his role and put himself in
the right mindset for every ritual. Rituals are eventually a role playing game.
Roles are not functions ! We are not speaking hierarchy here, it's more a
question of role play : when someone is assigned a role, his objective is to act
and challenge the matters being discussed in correspondence with his role !

As an important note, roles can well be shared. A same co-worker can have multiple
roles if required, even though it would be better to avoid this.

3.3.2.2 Required Committees and teams

Required committees and teams are as follows:

65 The Agile Methods Collection / Jerome Kehrli

https://www.youtube.com/watch?v=vkYEqz_MA5Y
https://www.youtube.com/watch?v=vkYEqz_MA5Y

3. Agile Planning : tools and processes

• Development team : The development team is responsible to develop the
software. It is composed by Developers, Tech Leads, Architects and the Team
Leader. At the end of the day, they're all developers and even the Team
Leader should be able to spend a ratio of his time developing the Software
(Lead by Example). Its essential ritual is the daily scrum every day.

• Product Management Committee : The Product Management Committee -
or PMC - is composed by the Development Team Leader, The Architect(s) and
The Product Owner. The Product Owner should convoke business
representatives as required. The PMC is responsible for identifying the new
features to be added to the product and prioritize them. It should take place
every week or every two weeks at most.
The PMC identifes new features as User Stories and Uses the Story Map to
track them and prioritize them. Priorities are redefned and adapted as Stories
Estimations (in Story Points) are refned. This process is explained later.
Priorities should be set in respect to the value and the cost (in SP) of each
and every story.

• Architecture Committee : The Architecture Committee is composed by the
Team Leader, The Architect(s), The Product Owner, the Tech Leads and
representatives of the Development team.
The Architecture Committee is responsible to analyze user stories and defne

66 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Development Tasks. Every story should be specifed, designed and discussed.
Screen mockups if applicable should be drawn, acceptance criteria agreed,
etc.
Since the Architecture Committee is also responsible for estimating Stories,
it's important that representatives of the Development Team, not only the Tech
Leads and the Architects, but simple developers as well, take part in it. Ideally,
there should be a rotation and at every meeting a diferent couple of
developers should be convoked. This is required to have everyone agreeing on
the estimations.
The Architecture Committee should take place every week or every two weeks
at most as well and ideally not long after the PMC.

• Sprint Management Committee : The Sprint Management Committee is
basically composed by the Development Team plus the Product Owner.
During Sprint Planning, the Sprint Management Committee discusses the
implementation concerns of the tasks specifed by the Architecture Committee
and challenge the estimations if required. The Development Tasks defned by
the Architecture Committee are detailed as much as possible.
During Sprint retrospective, the Sprint Management Committee discussed the
issues and drawbacks encountered during former sprint and agrees on an
action plan to address them.

3.3.3 The Processes

I will be presenting now the various processes that are required to achieve the
ultimate goal of Agile Planning : reliable forecasts and planning.

3.3.3.1 Design Process

The Design process consists in breaking a User Story identifed by the PMC into
Development tasks that developers can understand and work on.
It can be illustrated as follows:

67 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

A. Identifcation of User Stories

The PMC produces a User Story laid down on the Story Map.

B. From User Stories to Development Stories

The Architecture Committee analyzes every new story and for each of them it
creates a Development Story on the Product Backlog.

Such a Development Story is not anymore a simple post-it in a Story Map, it is a
digital User story created in the backlog management tool such as Jira or Redmine.
The Development Story is specifed and design. It should contain:

• The initial user story from the Story Map as it was expressed at that time.

• A complete description of the purpose and intents of the feature.

• A complete description of the expected behaviour from all perspectives: user,
system, etc.

• Mock-ups of screens and front-end behaviours as well as validations to be
performed on the front-end.

• A precise and exhaustive list and description of all business rules.

• A list and description of the data to be manipulated.

68 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

• Several examples of source data or actions and expected results.

• Acceptance criteria (functional and non-functional) and a complete testing
procedure.

C. From Development Stories to Development Tasks

The Architecture Committee also breaks the Development Story down in
several Development Tasks.
Development tasks should be split by logical or functional units or layers. For
instance, one task could be related to the GUI while another one could be related to
the database changes, etc. But if it is possible, it is always better not to split them
by layer but rather vertically by sub-feature.
What should never be done is splitting a Story in tasks by the type of job, for
instance development, unit test, integration tests. That should never ever be done. A
developer, or a couple of developers should always implement a sub-feature
entirely, with all the required tests, functional tests, migration scripts, etc.

D. From Development Tasks to Detailed Tasks

The Sprint Management Committee, during Sprint Planning recovers all these
Development Tasks and analyzes them further.

The questions to be answered at this time are:

• Are all the information provided by the Architecture Committee clear enough
or are some precisions required ?

• Is there any unforeseen impact on other parts of the software ?

• Is there any tool or specifc environment setup or confguration required to
implement these tasks ?

• etc.

Specifcally the developers that were not present at Architecture Committee when a
task has been designed should challenge it and make sure they understand not only
what need to be done but really also how to do it precisely.
At this stage, the new fndings should lead to a refnement of the initial estimations
agreed by the Architecture Committee.

3.3.3.2 Estimation Process

What we want eventually, is a Story Map containing estimations for all the Stories
that have been analyzed by the Architecture Committee.
The result we want to achieve here can be represented as follows:

69 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Each and every story that has been broken down by the Architecture Committee and
created in the Product Backlog is clearly identifed: it has an estimation expressed as
a total number of Story Points.
That number corresponds to the total of the estimations in SP of the individual
Development Tasks underneath.

A. Initial Estimations

At this stage, The Architecture Committee is in charge of the Initial Estimations.
After a Story has been broken down in tasks, each and every of these tasks is
estimated by the Committee using the Planning Poker approach.
The sum of the estimations of every individual tasks is reported on both the
Development Story (Product Backlog) and the User Story (Story Map):

70 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

B. Refned Estimations

When the Sprint Management Committee recovers the Development Tasks to
refne them, there might be new impacts discovered, new unforeseen refactorings
required, etc.

The Sprint Management Committee should challenge the initial estimations with
their new fndings and adapt the estimations accordingly.
Again, these new Refned Estimations should be reported on both the Development
Story (Product Backlog) and the User Story (Story Map):

71 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

C. Final Estimations

Eventually, during the sprint, it can happen that a developer discovers that a task
will take a bigger time than expected, or, in the contrary, a much shorter time.
Reporting such changes in estimations at this very late stage is maybe not important
for Scrum, since the sprint is already flled, but it's important for both the Sprint
Management Committee and the Architecture Committee to be notifed about them
in order to improve the way they do estimations.
As part of Continuous Improvement (Kaizen), the Architecture Committee needs to
identify where the gap comes from and try to have more accurate estimations next
time.

So even at this stage, when a developer discovers gaps or shortcut, it's important
that any impact in terms of estimation is reported as far as to the Story Map:

Why bother ?

The management tool is the story map, not the product backlog. The product
backlog is a technical tool to organize the development activities. It's not a
management tool.

The Product Management Committee should be able to decide about priorities using
solely the Story Map. In addition, it should be possible to forecast a delivery date
using solely the Story Map.
For this reason, the Story Map should contain as up to date as possible estimations.

Everyone in the company should be able to take is little calculator, go in front of the
story map and know precisely when a task will be delivered.
We'll see how soon !

72 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

What about updating estimations after the task has been completed and
we know how much time we spent on it ?

One needs to understand what we're trying to achieve here.

We're trying to continuously improve our ability to come up with accurate and
reliable estimations based on the information we have. When we estimate tasks at
ARCHCOM or Sprint Planning, we only have analysis information at our disposal, we
have no clue about any post-implementation information such as the actual time
that will be spent on the task.
As such, while it is very important to improve our ability to estimate using analysis
information (as done at ARCHCOM), it makes no sense to update estimations after
implementation since actual implementation time is an information we will never
have before implementing the task.

Again, we want to improve our ability to estimate using the information we have.
And actual implementation time is an information we don't have so it's useless in
regards to improving the estimation process and as such doesn't trigger any
estimation update.

In addition, the estimation process is a comparison game, not an evaluation game
(or less). An Estimation in SP should have no clear relationship with actual
implementation time, for many reasons, among them the fact the diferent
developers have diferent capacity. A 10 SP task is always a 10 SP task, for every
developer. But it may well represent 4 days of work for a junior developer and 2 days
of work for a senior developer.
This aspect is a very important reason behind the rationality to think in terms of SP
instead of Man/Days. And of course SP should be a measure of the whole team
capacity, not individuals.

This is why we don't bother updating estimations after actual implementation.
Nevertheless, we should still use that knowledge to improve our estimations, but
actually trying to update the estimation in SP makes no sense.

3.3.3.3 Product Kanban Board Maintenance Process

Maintaining the Product Kanban Board (Mix of Story Map and Kanban Board) as up to
date as possible with latest activities of the development team as well as the latest
estimations is important.
Again, The Product Kanban Board is the only tool that should be required by the
Product Management Committee to come up with estimations and forecasts.

We will now see how this Product Kanban Board should be maintained throughout
the sprints and how it is used.

73 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

A. Initial Stage: before the frst sprint of the nest release

We start with a Board of the following shape:

The boxes in blue indicate how a User Story is moved across the board when it
advances in the analysis and development process:

• First, when the Architecture Committee has done analyzing and breaking down
the Story, the estimation it came up with is reported on the User Story in the
violet pellet.

• Then, A Story is moved to Implementation / Doing when a frst of its
development tasks is being implemented in the current sprint

• It is moved to Implementation / Done when the last of its development
tasks is done being implemented (meaning completely done : with automated
tests, IT tests, etc. At this stage it's simply waiting the next continuous deliver
build to be available on Test environment for acceptance tests.

• When the Continuous Delivery build has been executed, the Story is moved to
Testing.

• When the product Owner either tested the Story (or delegated such tests) and
accepts the results, the Story is moved to Done

The Story Map on the left is a pretty standard Story Map, where releases are
identifed.

74 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

The Story Map on the right, on the other hand, drops the notion of releases
completely. It identifes the features as they are available as a whole in the current
development version of the product, regardless of both past releases and releases to
come.
A story identifying a new feature is simply added to it to capture the fact that the
feature is now available on the development version.
On the other hand, a story identifying a modifcation of an existing feature should be
merged with the original story, potentially leading to a new story, corresponding
to the new way of expressing the feature.

B. During the frst sprint

During the frst sprint after this initial stage, the Kanban board in the middle
identifes the Stories that are being worked on and their status:

C. During the second sprint

After frst sprint, developed stories are put on the Story Map on the right and a next
set of Stories are being developed:

75 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

D. After the frst release

After the frst release, we can see that all the tasks from the frst release of the Story
Map on the left have been moved to the Story Map on the right.
The Story Map on the left is adapted and the next releases are shifted up.

Notes:

• Actual releases will difer: we can release potentially at every end of Sprint.
Releases identifed on the Story Map on the left will likely be broken down in
smaller releases.

76 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

• Again, one should embrace Continuous Delivery: The development Team
releases at every end of sprint. Making it a customer release is a Product
Management Decision

• One should consider feature flipping (see 4.3.5 Zero Downtime Deployments)
in order not to compromise a potential release with a story that would not
have been completely implemented in one sprint.

E. No notion of release in Done (Right Story Map)

The Story Map on the right shouldn't have any notion of releases. It represents the
Product as is the current development version and it makes no sense anymore
remembering there which task has been developed in which release.

Also, User stories on the right may need to be merged whenever they relate to the
same feature.

3.3.3.4 Story Map and Backlog synchronization Process

The priorities of the Development Tasks on the Product Backlog should match and
follow the priorities of the User Stories on the Story Map.
When a story priority changes, the priorities of the corresponding Development
Tasks on the Product Backlog should be changed in order to reflect the new priority
of the User Story.

The principle is as follows:

77 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

In terms of process, things occur this way:

1. The Architecture Committee takes Stories created by the Product Management
Committee, designs them and estimates them.

2. The Product Management Committee learns about Stories Estimations and re-
prioritizes the Story Map accordingly

3. The Architecture Committee synchronizes the priorities of the corresponding
Development Tasks.

This can be represented this way:

78 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Let's see now how all of this is used to be able to achieve its ultimate objective :
reliable planning and forecasting.

3.3.3.5 Forecasting

So ... forecasting, fnally.
At the end of the day, pretty much everything I have presented above, all these
tools, charts and processes are deployed towards this ultimate objective: doing
planning and being able to produce accurate forecasts.

If one respects well the processes presented above and use the tools the right ways,
one should end up with the Story Map presented in 3.3.3.2 Estimation Process,
hence Stories that hold the indication of a pretty accurate estimation in Story Points.

In addition, a story map holds an important notion of priority: the development team
needs to implement all the stories of a row, from left to right, before it can consider
the stories of the next row.

So how does one know when a story will be implemented by the development team?
The answer is simple: when all stories of the previous rows as well as all stories on

79 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

the left on the same row are implemented.
From there, calculating the amount of Story Points to be developed before a specifc
story can be implemented is straightforward:

Recovering the example introduced in #3.3.2 Estimation Process, if we want to know
when the Story with the blue box around it, we have frst to know how many story
points have to be implemented frst, 1750 SP in this example.

Base on this, we know that this story will be delivered once all the stories
before it will be implemented plus this story as well, hence 1750 + 100 SP =
1850 SP.

Estimating a delivery date

In order to estimate a delivery date for that story, we need to know how much time
is required to deliver these 1850 SP.
Here comes the notion of Sprint capacity, or rather Spring velocity. Strictly speaking,
Agilists speak of capacity when reasoning of man days and Sprint velocity when
reasoning in Story Points.
I myself use Sprint capacity for both cases.

80 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Computing Sprint velocity requires to have all the practices described in introduction
in place for several Sprints. I will come back on practices in the next chapters so I'm
leaving them aside for now.
If the Agile Team is mature in regards to its practices, it can compute the Sprint
Capacity be looking at the range of Story Points achieved during 5 last sprints:

We don't use the most extreme, minimum and maximum values. Extreme values
most of the time explain themselves by external factors: people get sick, leaves on
holidays, tasks are sometimes fnished in next sprint, etc.
Instead, out of fve sprints, we'll use the second maximum value and the last-but-
one value.

We use this range, and not a single value of average or median, to address a
fundamental aspect of software engineering: the uncertainty.
The range gives us a lower value and an upper value which we will use as follows.

• In case of fxed time, when we have a fxed delivery date, the lower and
upper values give us the minimum or maximum set of features we can have
implemented at that date.

• In case of fxed scope, when we have to release a version of the software
with a given set of features, the lower and upper values will give us the
earliest date and the latest date at which we can release.

As a sidenote, when we count Story Points implemented in a sprint, we should focus
on developer tasks, not User Stories, since User Stories are too coarse grained.
A User story can well take several sprints to be completed. A developer task within
one of these stories should not. Tasks should be designed in such a way that they
are small enough to always ft a sprint.

81 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Recovering the example above, let's imagine we are want to achieve a fxed scope,
we want to know, using the Story Map as it is, how much time will be required to
implement these 1850 Story Points.

• Using the lower limit of 128 SP per sprint, it would take us 15 sprints to
complete the scope, hence 30 weeks or 6.7 months

• Using the upper limit of 138 SP per sprint, it would take us 14 sprints to
complete the scope, hence 28 weeks or 6.2 months

Based on this, the PMC or the Product Owner can communicate to the stakeholders
that the feature would be release not before 6 months but before 7 months.

3.3.3.6 Development process: Scrum

I said enough about Scrum in this paper already.
Let me just introduce this chart that does a great job in introducing the notion of
Product Increment as a shippable version of the product since we adopt
Continuous Delivery:

82 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

This allows me to present the last tool I mentioned in the introduction of this sprint,
which is the Sprint Kanban Board:

The sprint Kanban board is used to track the progress of tasks within the sprint and
enables to organize developer activities.

Some people use extensively burndown charts to track the proper progress of a
sprint or the product backlog towards a specifc release as a whole. I myself never

83 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

fnd it so useful. I really get all I want to know about how a release or a specifc
sprint is doing by using the Product Backlog, the Product Kanban Board or the Sprint
Kanban.

3.3.4 The Rituals

Rituals of the various teams are as follows.
Committees are rituals by themselves, the diference between a team and a
committee is that a committee gathers solely for a specifc ritual

3.3.4.1 Product Management Committee

The Product Management Committee gather every X weeks. It really depends of the
corporation, the size of the team, the rate at which new functional requirements
appear. Every few 2 weeks should be sufcient in general, otherwise the frequency
can increase as far as every week.

The duties of the Product Management Committee are as follows:

Story Mapping

• Identifcation of new needs and requirements (also technical and
technological!)

• Breakdown of these requirements in User Stories

• "Guessing" of an Initial Priority of a User Story based on Value (and foreseen
size)

Maintenance (update) of Priorities

• Setting of Actual Priorities based on Estimations from Architecture Committee

• Review of priorities of Whole Story Map after update of estimations

• From Sprint Management Committee
• From Development Team

84 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

3.3.4.2 Architecture Committee

The Architecture Committee also gather every X weeks. It should meet at least few
minutes (cofee break) but not more than one or two days after Product
Management Committee.
The Architecture Committee recovers the last User Stories designed at PMC and
synchronizes the Product Backlog with the Story Map. Stories are specifed, designed
and broken downs in Development Tasks.

The duties of the Architecture Committee are as follows:

Specifcation and Design of User Stories

• Specifcation of functional and non-functional requirements

• Identifcation of business rules

• Identifcation of Acceptance criteria

• Design of GUI

• Architecture and Design of Software

Estimation of User Stories

• Breakdown in individual Development Tasks

• This needs to be done sufciently in advance

• Estimation of Development Tasks

• Computing of total Estimation and reporting on User Story

• Continuous Improvement: understanding of gaps in estimation after
notifcation of Sprint Committee and how to improve

Software Architecture

• Identifcation and maintenance of Coding Standards and Architecture
Standards

• Review of ad'hoc architecture topics

85 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

3.3.4.3 Sprint Management Committee

The Sprint Management Committee gathers at every beginning and end of sprint.
A sprint starts with the Sprint Planning and ends with Sprint Demo and Sprint
Retrospective:

Sprint Planning

• Discuss Development Tasks to ensure whole team has a clear view of what
needs to be done → Detailed Tasks

• Review and challenge estimations of Detailed Tasks. Update estimation of User
Story accordingly

• Feed the Sprint Backlog with such Detailed Tasks until Sprint Capacity is
reached

Sprint Retro

• Review Tasks not completed and create task identifying GAP for next Sprint.
Update estimations.

• Review SP achieved during sprint and review Sprint Capacity

• Discuss issues encountered during Sprint and identify action points. Update
processes and rituals accordingly

• Continuous Improvement: understanding of gaps in tasks and estimations and
how to improve

Sprint Demo

• End of Sprint / really optional with Continuous Delivery and Continuous
Acceptance Tests

• Present sprint developments and integrate feedback. Create new tasks and
update estimations.

86 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

3.3.4.4 Development Team - Daily Scrum

The daily scrum happens every day, ideally early in the moment, at the time all the
team is in the ofce.
The scope of the daily scrum is as follows:

Round table - every team member presents:

• Past or current development task

• Status on that task and precise progress

• Next steps

• Next task if former is completed

• Identifcation of unforeseen GAPS and adaptation of estimations

Identifcation of challenges, issues and support needs

• Scheduling of ad'hoc meeting and required attendees to discuss specifc
issues

3.3.5 The Values

Sticking rituals, respecting principles and enforcing practices is difcult.

• It's difcult to ensure and behaves in such a way that breaking the build
(failing tests) is an exception.

• It's difcult to respect the boyscout rule.

• It's a lot more difcult to design things carefully and stick to the KISS principle.

• It's difcult and a lot of work to keep the Story Map and Product Backlog in
sync and up-to date with the reality.

• It's difcult to stick to the TDD approach.

• It's difcult not to squeeze the Kaizen phase at the end of every meeting and
being objective when it comes to analyzing strengths and weaknesses.

All of this make two Agile values especially important: Discipline and courage.
Both are utmost important and essential to address these difculties.

87 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

Sticking to the Scrum rituals, enforcing TDD and other XP principles and practices
require courage and discipline. It also requires a lot of discipline to Maintain and
synchronize the Product Backlog and the Story Map.
Updating the estimations of the User Stories continuously as the understanding of
the work to be done progresses also takes a lot of discipline.

Finally, discipline and courage are enforced by a strict defnition of the processes
and rituals and a proper maintenance of this defnition as the culture and practices
evolve.
At the end of the day, defning these committees and rituals is all about that. Why
are all these committees / teams / rituals required if eventually a person can have
several roles? Because they enforce discipline: they are scheduled and have precise
agendas.

3.4 Overview of the whole process

The whole process looks as follows:

• Product Management Committee (X-Weekly)

• 1 Identifcation of a new User Story
• 2 Initial foreseen priority (i.e. release) depending on value and initial

estimation (oral)
• Architecture Committee (X-Weekly)

• 3 Design and specifcation by architecture committee : Story →
Development Story → Task

• 4 Estimation of individual tasks
• 5 Computation of total SP and setting of size of Development Story and

User Story
• 6 Re-prioritization (based on new estimation)

• Sprint Planning + Sprint retrospective (Sprintly)

• 7 Review of TaskS and discussion : Task → Detailed Task
• 8 Adaptation of Estimation on TaskS
• 9 Update of Total Size of Development Story and User Story
• 10 Notifcation to Architecture Committee (Kaizen / Sprint retrospective)

• Daily Scrum

• 11 Identifcation of Gap on Task
• 12 Adaptation of Estimation on Task
• 13 Update of Total Size of Development Story and User Story
• 14 Notifcation to Architecture Committee (Kaizen / Sprint retrospective)

In a graphical way:

88 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

3.5 Return on Practices

As stated a lot of times in this paper, all of this, reliable planning and true agility,
require a strong commitment of the team to Agile practices and principles.

One cannot apply only a small subset of the Agile Practices and believe he will
achieve true agility and Reliable Agile Planning.
The Agile practices I listed in introduction form a package with strong dependencies
between each other.

IMHO the dependencies are as follows:

89 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

An arrow denotes a dependency between two practices.

Explanations of a few of these dependencies:

• You cannot imagine reliable planning and forecasting if you don't provide
the management with appropriate tools : Story Map and Kanban boards.
Also, it's going to be difcult without a proper technical tool for the
development team: The Product Backlog.
Finally, it obviously requires Reliable Estimations.

• Reliable estimations need to have manageable and well planned sprints.
1 week sprints are too small, a lot can happen in 1 week while 3 weeks are too
big in my opinion, the fluctuations are too important. I strongly believe that 2
weeks sprints is the right size when it comes to having an accurate and
reliable Sprint Capacity (or Velocity) in SP.
With 2 weeks sprints only, the development team cannot aford spending time
on releasing the Shippable Product, releasing should be a completely
automated procedure and in this regards Continuous Delivery is not
optional.

• Then achieving Continuous Delivery requires a lot of things and a good
mastery of common XP and DevOps Practices.

3.6. Conclusion

Management needs a management tool to take enlightened decision. The product
backlog should not be a management tool, it's really rather the development team's

90 The Agile Methods Collection / Jerome Kehrli

3. Agile Planning : tools and processes

internal business. The Story Map, on the other hand, is a simple, visual and efective
management tool.
All the rituals and processes introduced in this paper are deployed towards the same
ultimate goal: enabling the management to use the Story Map as a
management tool for planning and forecasting. In addition, the specifc form of
Story Map introduced here, the Product Kanban Board, becomes also a Project
Management Tool aimed to tracking the progresses of the development team.

The difculty, the reason why it requires a strict enforcement of processes and
rituals, is to synchronize the Story Map and the Product Backlog.
Since the development team works mostly with the Product Backlog, the later has
eventually the accurate and realistic information about size and time of deployment,
through the notion of Story Points.
But this is in no help for the management, hence the reason why it is required to
backfeed the estimations put in the Product Backlog to the Story Map.

Eventually, if these processes and rituals are respected and well applied, anyone in
the company can come in front of the Product Kanban Board with a little calculator
and compute the delivery date (or rather the range) for any given story.
Anyone can use the Story Map to compute how much work can be done for any
given date, or what time is required to deliver a specifc scope.

All of this with a simple calculator and a few seconds, without Excel, without any
Internet connection, without any complicated too nor any pile of paper, just a
calculator ... or a brilliant mind.

Now having said that, I would like to conclude this paper by mentioning that the
processes and tools I am presenting here work for us. They may not work as is for
another organization. It's up to every organization to discover and fnd the practices
and principles that best ft its needs and individuals.
As an example, the association of two Story Maps, the "to do" on the left and the
"done" on the right of a Kanban Board for the needs of both Product and Project
Management is a really personal recipe. While I myself got the idea from another
organization, I haven't seen that often.
This shows in my opinion the very best qualities of an agilist: the curiosity to
discover new ways of working and the courage to try them or invent them.

91 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

4. DevOps explained

So ... I've read a lot of things recently on DevOps, a lot of very interesting things ...
and, unfortunately, some pretty stupid as well. It seems a lot of people are
increasingly considering that DevOps is resumed to mastering chef, puppet or docker
containers. This really bothers me. DevOps is so much more than any tool such as
puppet or docker.

This could even make me angry. DevOps seems to me so important. I've spent 15
years working in the engineering business for very big institutions, mostly big
fnancial institutions. DevOps is a very key methodology bringing principles and
practices that address precisely the biggest problem, the saddest factor of failure of
software development projects in such institutions : the wall of confusion between
developers and operators.

Don't get me wrong, in most of these big institutions being still far from a large and
sound adoption of an Agile Development Methodology beyond some XP practices,
there are many other reasons explaining the failure or slippage of software
development projects.
But the wall of confusion is by far, in my opinion, the most frustrating, time
consuming, and, well, quite stupid, problem they are facing.

So yeah... Instead of getting angry I fgured I'd rather present here in a concrete and
as precise as possible article what DevOps is and what it brings. Long story short,
DevOps is not a set of tools. DevOps is a methodology proposing a set of
principles and practices, period. The tools, or rather the toolchain - since the
collection of tools supporting these practices can be quite extended - are only
intended to support the practices.
In the end, these tools don't matter. The DevOps toolchains are today very diferent
than they were two years ago and will be very diferent in two years. Again, this
doesn't matter. What matters is a sound understanding of the principles and
practices.

Presenting a specifc toolchain is not the scope of this article, I won't mention any.
There are many articles out there focusing on DevOps toolchains. I want here to take
a leap backwards and present the principles and practices, their fundamental
purpose since, in the end, this is what seems most important to me.

DevOps is a methodology capturing the practices adopted from the very start by the
web giants who had a unique opportunity as well as a strong requirement to invent
new ways of working due to the very nature of their business: the need to evolve
their systems at an unprecedented pace as well as extend them and their business
sometimes on a daily basis.

92 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

While DevOps makes obviously a critical sense for startups, I believe that the big
corporations with large and old-fashioned IT departments are actually the ones that
can beneft the most from adopting these principles and practices. I will try to
explain why and how in this article.

4.1 Introduction

DevOps is not a question of tools, or mastering chef or docker. DevOps is a
methodology, a set of principles and practices that help both developers and
operators reach their goals while maximizing value delivery to the customers or the
users as well as the quality of these deliverables.

The problem comes from the fact that developers and operators - while both
required by corporations with large IT departments - have very diferent objectives.

This diference of objectives between developers and operators is called the wall of
confusion. We'll see later precisely what that means any why I consider this
something big and bad.

DevOps is a methodology presenting a set of principles and practices (tools are
derived from these practices) aimed at having both these personas working towards
an unifed and common objective : deliver as much value as possible for the
company.

And surprisingly, for once, there is a magic silver bullet for this. Very simply, the
secret is to bring agility to the production side!
And that, precisely that and only that, is what DevOps is about !

But there are quite a few things I need to present before we can discuss this any
further.

93 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

4.1.1 The management credo

What is the sinews of war of IT Management ? In other words, when it comes to
Software Development Projects, what does management want frst and foremost ?

Any idea ?

Let me put you on tracks : what is utmost important when developing a startup ?

Improve Time To Market (TTM) of course !

The Time To Market or TTM is the length of time it takes from a product being
conceived until its being available to users or for sale to customers. TTM is important
in industries where products are outmoded quickly.
In software engineering, where approaches, business and technologies change
almost yearly, the TTM is a very important KPI (Key Performance Indicator).
The TTM is also very often called Lead Time

A frst problem lays in the fact (as believed by many) that TTM and product quality
are opposing attributes of a development process. As we will see below, improving
quality (and hence stability) is the objective of operators while reducing lead time
(and hence improving TTM) is the objective of developers.
Let me explain this.

An IT organization or department is often judged on these two key KPIs : the quality
of the software, where the target is to have as little defects as possible, and the TTM,
where the target is to be able to go from business ideas (often given by business
users) to production - making the feature available to users or customers - as soon
as possible.
The problem here is that most often these two distinct objectives are supported by
two diferent teams : the developers, building the software, and the operators,
running the software.

4.1.2 a typical IT organization

A typical IT organization, in a corporation owning an important IT department, looks
as follows :

94 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

Mostly for historical reasons (operators come from the hardware and telco business
most often), operators are not attached to the same branch than developers.
Developers belong to R&D while operators most of the time belong to Infrastructure
department (or dedicated operation department).

Again, they have diferent objectives:

In addition, and as a sidenote, these both teams sometimes even run on diferent
budget. The development team uses the build budget while the operation team uses

95 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

the run budget. These diferent budgets and the increasing needs to control and
shorten the costs of IT in corporation tend to emphasize the opposition of objectives
of the diferent teams.
(In parenthesis: nowadays, with the always and everywhere interconnection of
people and objects pushing the digitalization of businesses and society in general,
the old Plan / Build / Run framework for IT budgeting makes IMHO really no sense
anymore, but that is another story)

4.1.3 Ops frustration

Now let's focus on operators a little and see, in average, how a typical operation
team spends its time:

(Source : Study from Deepak Patil [Microsoft Global Foundation Services] in 2006, via
James Hamilton [Amazon Web Services]

http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_POA20090226.pdf)

So almost 50% (47) of total time of Production Teams is dedicated to deployment
related topics:

• Actually doing deployment or

96 The Agile Methods Collection / Jerome Kehrli

http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_POA20090226.pdf

4. DevOps explained

• Fixing problems related to deployments

This is actually a pretty crazy KPI, one that should have been followed much sooner.
The truth is, operator teams have been since their inception in the early age of
Computer Engineering - 40 years ago, at the time computers were massively
introduced in the industry - this kind of hackers running tons of commands manually
to perform their tasks. They are used to long checklists of commands or manual
processes to perform their duties.
Somehow, they sufer from the sWe always did it like thiss syndrome and challenged
very little their ways of working over these 40 years.
But if you think of it, this is really crazy. In average, operators spend almost 50% of
their time doing deployment related tasks!

This underlines two critical needs for evoluting these processes:

1. Automate the deployments to reduce the 31% time dedicated to these
currently manual tasks.

2. Industrialize them (just as software development has been industrialized,
thanks to XP and Agile) to reduce the 16% related to fxing these deployment
related issues.

4.1.4 Infrastructure automation

In this regards, another statistic is pretty enlightening:

Probability of succeeding an installation expressed as a function of the number of
manual operation

This is read the following way :

97 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

• With only 5 manual commands, the probability of succeeding an installation
drops to 86% already.

• With 55 manual commands, the probability of succeeding an installation drops
to 22%.

• With 100 manual commands, the probability of succeeding an installation is
close to 0! (2%)%

Succeeding the installation means that the software behaves in production as
intended. Failing it means something will go wrong and some analysis will be
required to understand what went wrong with the installation and some patches will
need to be applied or some confguration corrected.

So automating all of this and avoiding manual commands at all cost seems
to be rather a good idea, doesn't it ?

So what's the status in this regards in the industry:

(Source : IT Ops & DevOps Productivity Report 2013 - Rebellabs -
http://pages.zeroturnaround.com/rs/zeroturnaround/images/it-ops-devops-

productivity-report-2013%20copy.pdf)

(To be perfectly honest, this statistic is pretty old - 2013 - I would expect a little
diferent numbers nowadays)

98 The Agile Methods Collection / Jerome Kehrli

http://pages.zeroturnaround.com/rs/zeroturnaround/images/it-ops-devops-productivity-report-2013%20copy.pdf
http://pages.zeroturnaround.com/rs/zeroturnaround/images/it-ops-devops-productivity-report-2013%20copy.pdf

4. DevOps explained

Nonetheless, this gives a pretty good idea of how much is still to be accomplished in
regards to Infrastructure automation and how much DevOps principles and practices
are very important.

Again the web giants had to come up with a new approach, with new practices to
address their needs of responsiveness. What they started their engineering business
in their early days, the practices they put in place is at the root of what is today
DevOps.

Let's look at where the web giants stand now in this regards. A few examples:

• Facebook has thousands of devs and ops, hundreds of thousands of servers. In
average, an operator takes care of 500 servers (think automation is
optional ?). They do two deployments a day (concept of deployment ring)

• Flickr does 10 deployments a day

• Netflix designs for failure! The software is designed from the grounds up to
tolerate system failures. They test it all the time in production: 65'000 failure
tests in production daily by killing random virtual machines ... and measuring
that everything still behaves OK.

So what is their secret ?

4.1.5 DevOps : For once, a magic silver bullet

The secret is simply to Extend Agility to Production:

DevOps consists mostly in extending agile development practices by further
streamlining the movement of software change thru the build, validate, deploy and
delivery stages, while empowering cross-functional teams with full ownership of
software applications - from design thru production support.

99 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

DevOps encourages communication, collaboration, integration and
automation among software developers and IT operators in order to improve both
the speed and quality of delivering software.

DevOps teams focus on standardizing development environments and automating
delivery processes to improve delivery predictability, efciency, security and
maintainability. The DevOps ideals provide developers more control of the
production environment and a better understanding of the production infrastructure.

DevOps encourages empowering teams with the autonomy to build, validate, deliver
and support their own applications.

So what are the core principles ?

We'll now dig into these 3 essential principles.

4.2 Infrastructure as Code

Because humans make mistakes, because the human brain is terribly bad at
repetitive tasks, because humans are slow compared to a shell script, and because
we are humans after all, we should consider and handle infrastructure concerns just
as we handle coding concerns!

Infrastructure as code (IaC) is the prerequisite for common DevOps practices such as
version control, code review, continuous integration and automated testing. It
consists in managing and provisioning computing infrastructure (containers,
virtual machines, physical machines, software installation, etc.) and their

100 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

confguration through machine-processable defnition fles or scripts, rather
than the use of interactive confguration tools and manual commands.

I cannot stress enough how much this is a key principle of DevOps. It is really
applying software development practices to servers and infrastructure.
Cloud computing enables complex IT deployments modeled after traditional physical
topologies. We can automate the build of complex virtual networks, storage and
servers with relative ease. Every aspect of server environments, from the
infrastructure down to the operating system settings, can be codifed and stored in a
version control repository.

4.2.1 Overview

In a very summarized way, the levels of infrastructure and operation concerns at
which automation should occur is represented on this schema. The tools proposed as
examples on the schema above are very much oriented towards building the
diferent layers. But a devops toolchain does much more than that.
I think it's time I tell a little more about the notion of DevOps Toolchains.

4.2.2 DevOps Toolchains

Because DevOps is a cultural shift and collaboration between development,
operations and testing, there is no single DevOps tool, rather, again, a set of them,
or DevOps toolchain consisting of multiple tools. Such tools ft into one or more of

101 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

these categories, which is reflective of the software development and delivery
process:

• Code : Code development and review, version control tools, code merging

• Build : Continuous integration tools, build status

• Test : Test and results determine performance

• Package : Artifact repository, application pre-deployment staging

• Release : Change management, release approvals, release automation

• Confgure : Infrastructure confguration and management, Infrastructure as
Code tools

• Monitor : Applications performance monitoring, end user experience

Though there are many tools available, certain categories of them are essential in
the DevOps toolchain setup for use in an organization.

Tools such as Docker (containerization), Jenkins (continuous Integration), Puppet
(Infrastructure building) and Vagrant (virtualization platform) among many others
are often used and frequently referenced in DevOps tooling discussions as of 2016.

Versioning, Continuous Integration and Automated testing of
infrastructure components

The ability to version the infrastructure - or rather the infrastructure building scripts
or confguration fles - as well as the ability to automated test it are very
important.
DevOps consists in fnally adopting the same practices XP brought 30 years ago to
software engineering to the production side.
Even further, Infrastructure elements should be continuously integrated just as
software deliverables.

4.2.3 Benefts

There are so many benefts to DevOps. A non-exhaustive list could be as follows:

• Repeatability and Reliability : building the production machine is now
simply running that script or that puppet command. With proper usage of
docker containers or vagrant virtual machines, a production machine with the
Operating System layer and, of course, all the software properly installed and
confgured can be set up by typing one single command - One Single
Command. And of course this building script or mechanism is continuously
integrated upon changes or when being developed, continuously and
automatically tested, etc.

102 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

Finally we can beneft on the operation side from the same practices we use
with success on the software development side, thanks to XP or Agile.

• Productivity : one click deployment, one click provisioning, one click new
environment creation, etc. Again, the whole production environment is set-up
using one single command or one click. Now of course that command can well
run for hours, but during that time the operator can focus on more interesting
things, instead of waiting for a single individual command to complete before
typing the next one, and that sometimes for several days...

• Time to recovery ! : one click recovery of the production environment,
period.

• Guarantee that infrastructure is homogeneous : completely eliminating
the possibility for an operator to build an environment or install a software
slightly diferently every time is the only way to guarantee that the
infrastructure is perfectly homogeneous and reproducible. Even further, with
version control of scripts or puppet confguration fles, one can rebuild the
production environment precisely as it was last week, last month, or for that
particular release of the software.

• Make sure standards are respected : infrastructure standards are not
even required anymore. The standard is the code.

• Allow developer to do lots of tasks themselves : if developers become
themselves suddenly able to re-create the production environment on their
own infrastructure by one single click, they become able to do a lot of
production related tasks by themselves as well, such as understanding
production failures, providing proper confguration, implementing deployment
scripts, etc.

These are the few benefts of IaC that I can think of by myself. I bet there are so
many much more (suggestions in comments are welcome).

4.3 Continuous Delivery

Continuous delivery is an approach in which teams produce software in short cycles,
ensuring that the software can be reliably released at any time. It aims at building,
testing, and releasing software faster and more frequently.
The approach helps reduce the cost, time, and risk of delivering changes by allowing
for more incremental updates to applications in production. A straightforward and
repeatable deployment process is important for continuous delivery.

Important note : Continuous Delivery ≠ Continuous Deployment - continuous
delivery is sometimes confused with continuous deployment. Continuous
deployment means that every change is automatically deployed to production.

103 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

Continuous delivery means that the team ensures every change can be deployed to
production but may choose not to do it, usually due to business reasons. In order to
do continuous deployment one must be doing continuous delivery

The key ideas behind continuous deliveries are:

• The more often you deploy, the more you master the deployment
process and the better you automate it. If you have to do something 3
times a day, you will make it bullet proof and reliable soon enough, when you
will be fed up of fxing the same issues over and over again.

• The more often you deploy, the smallest will be the changesets you
deploy and hence the smallest will be the risk of something going wrong, or
the chances of losing control over the changesets

• The more often you deploy, the best will be your TTR (Time to
Repair / Resolution) and hence the sooner will be the feedback you will get
from your business users regarding that feature and the easier it will be to
change some things here and there to make it perfectly ft their needs (TTR is
very similar to TTM in this regards).

(Source : Ops Meta-Metrics: The Currency You Pay For Change -
http://fr.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-

4608108)

But continuous delivery is more than building a shippable, production-ready version
of the product as often as possible. Continuous delivery refers to 3 key practices:

• Learn from the felds

• Automation

104 The Agile Methods Collection / Jerome Kehrli

http://fr.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108
http://fr.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108

4. DevOps explained

• Deploy more often

4.3.1 Learn from the feld

Continuous Delivery is key to be able to learn from the feld. There is no truth in
the development team, the truth lies in the head of the business users.
Unfortunately, no one is able to really clearly express his mind, his will in a
specifcation document, no matter the time he dedicates to this task. This is why
Agility attempts to put the feature in the hands of the users to get their feedback as
soon as possible, at all cost.
Doing Continuous delivery, as far as continuous deployment, and hence reducing
lead time to its minimal possible value, is key to be able to learn the truth from the
users, as soon as possible

But the truth doesn't come out in the form of a formal user feedback. One should
never trust its users or rely on formal feedback to learn from users. One should trust
its own measures.
Measure obsession is a very important notion from the Lean Startup movement
but it's also very important in DevOps. One should measure everything! Finding the
right metrics enabling the team to learn about the success or failures of an
approach, about what would be better and what has the most success can be
sometimes tricky. One should always take too many measures instead of missing the
one that would enable the team to take an enlightened decision.

Don't think, know! And the only way to know is to measure, measure everything:
response times, user think times, count of displays, count of API calls, click rate, etc.
but not only. Find out about all the metrics that can give you additional insights
about the user perception of a feature and measure them, all of them!

This can be represented as follows:

105 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

4.3.2 Automation

Automation has already been discussed above in section 4.2 Infrastructure as Code.

I just want to emphasize here that continuous delivery is impossible without a
properly and 100% automation of all infrastructure provisioning and deployment
related tasks.
This is very important, let me repeat it once more: setting up an environment and
deploying a production ready version of the software should take one click, one
command, it should be entirely automated. Without it, it's impossible to imagine
deploying the software several times a day.

In section 4.3.5 Zero Downtime Deployments below we will mention additional
important techniques helping Continuous Delivery as well.

4.3.3 Deploy more often

The DevOps credo is:

"If it hurts, do it more often !"

This idea of doing painful things more frequently is very important in agile thinking.
Automated Testing, refactoring, database migration, specifcation with customers,
planning, releasing - all sorts of activities are done as frequently as possible.

There are three good reasons for that:

1. Firstly most of these tasks become much more difcult as the amount of work
to be done increases, but when broken up into smaller chunks they compose
easily.
Take Database migration for instance: specifying a large database migration
involving multiple tables is hard and error prone. But if you take it one small
change at a time, it becomes much easier to get each one correct.
Furthermore you can string small migrations together easily into a sequence.
Thus when one decomposes a large migration into a sequence of little ones, it
all becomes much easier to handle. (As a sidenote, this is the essence of
database refactoring)

2. The second reason is Feedback. Much of agile thinking is about setting up
feedback loops so that we can learn more quickly. Feedback was already an
important and explicit value of Extreme Programming. In a complex process,
like software development, one has to frequently check where one stands and
make course corrections. To do this, one must look for every opportunity to
add feedback loops and increase the frequency with which one gets feedback
so one can adjust more quickly.

106 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

3. The third reason is practice. With any activity, we improve as we do it more
often. Practice helps to iron out the kinks in the process, and makes one more
familiar with signs of something going wrong. If you reflect on what you are
doing, you also come up with ways to improve your practice.
With software development, there's also in addition the potential for
automation. Once one has done something a few times, it's easier to see how
to automate it, and more importantly one becomes more motivated to
automate it. Automation is especially helpful because it can increase speed
and reduce the chance for error.

Now one question remains : how often to deliver with DevOps ?

There is no straight answer to that. It really depends on the product, the team, the
market, the company, the users, the operation needs, etc.
My best answer would be as follows: If you don't deliver at least every 2 weeks - or
at the end of your sprint duration period - you do not even do Agile, not to speak of
DevOps.
DevOps encourages to deliver as frequently as possible. In my understanding
(please challenge that in the comments if you like), you should train your team to be
able to deliver as frequently as possible. A sound approach, the one I'm using with
my team is to deliver twice a day on a QA environment. The delivery process is fully
automated: twice a day, at noon and at midnight, the machinery starts, builds the
software components, runs integration tests, builds the Virtual Machines, start them,
deploys the software components, confgures them, runs functional tests, etc.

107 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

4.3.4 Continuous Delivery requirements

What does one need before being able to move to Continuous Delivery?
My checklist, in a raw fashion :

• Continuous integration of both the software components development as well
as the platform provisioning and setup.

• TDD - Test Driven Development. This is questionable ... But in the end let's
face it: TDD is really the single and only way to have an acceptable coverage
of the code and branches with unit tests (and unit tests makes is so much
easier to fx issues than integration or functional tests).

• Code reviews ! At least codereviews ... pair programming would be better of
course.

• Continuous auditing software - such as Sonar.

• Functional testing automation on production-level environment

• Strong non-functional testing automation (performance, availability, etc.)

• Automated packaging and deployment, independent of target environment

Plus sound software development practices when it comes to managing big features
and evolutions, such as Zero Downtime Deployments techniques.

4.3.5 Zero Downtime Deployments

"Zero Downtime Deployment (ZDD) consists in
deploying a new version of a system without

any interruption of service."

ZDD consists in deploying an application in such a way that one introduces a new
version of an application to production without making the user see that the
application went down in the meantime. From the user's and the company's point of
view it's the best possible scenario of deployment since new features can be
introduced and bugs can be eliminated without any outage.

I'll mention 4 techniques:

1. Feature Flipping

2. Dark launch

3. Blue/Green Deployments

4. Canari release

108 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

Feature fipping

Feature flipping allows to enable / disable features while the software is running. It's
really straightforward to understand and put in place: simply use a confguration
properly to entirely disable a feature from production and only activate it when its
completely polished and working well.

For instance to disable or activate a feature globally for a whole application:

if Feature.isEnabled('new_awesome_feature')

 # Do something new, cool and awesome

else

 # Do old, same as always stuf

end

Or if one wants to do it on a per-user basis:

if Feature.isEnabled('new_awesome_feature', current_user)

 # Do something new, cool and awesome

else

 # Do old, same as always stuf

end

Dark Launch

The idea of Dark Launch is to use production to simulate load!

It's difcult to simulate load of a software used by hundreds of millions of people in a
testing environment.
Without realistic load tests, it's impossible to know if infrastructure will stand up to
the pressure.

Instead of simulating load, why not just deploy the feature to see what happens
without disrupting usability?
Facebook calls this a dark launch of the feature.

Let's say you want to turn a static search feld used by 500 million people into an
autocomplete feld so your users don't have to wait as long for the search results.
You built a web service for it and want to simulate all those people typing words at
once and generating multiple requests to the web service.
The dark launch strategy is where you would augment the existing form with a
hidden background process that sends the entered search keyword to the new
autocomplete service multiple times.
If the web service explodes unexpectedly then no harm is done; the server errors

109 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

would just be ignored on the web page. But if it does explode then, great, you can
tune and refne the service until it holds up.

There you have it, a real world load test.

Blue/Green Deployments

Blue/Green Deployments consists in building a second complete line of production
for version N + 1. Both development and operation teams can peacefully build up
version N + 1 on this second production line.
Whenever the version N + 1 is ready to be used, the confguration is changed on the
load balancer and users are automatically and transparently redirected to the new
version N + 1.
At this moment, the production line for version N is recovered and used to peacefully
build version N + 2.
And so on.

(Source : Les Patterns des Géants du Web – Zero Downtime Deployment -
http://blog.octo.com/zero-downtime-deployment/)

This is quite efective and easy but the problem is that it requires to double the
infrastructure, amount of servers, etc.
Imagine if Facebook had to maintain a complete second set of its hundreds of
thousands of servers.

So there is some room for something better.

Canari release

Canari release is very similar in nature to Blue/Green Deployments but it addresses
the problem to have multiple complete production lines.
The idea is to switch users to the new version in an incremental fashion : as more
servers are migrated from the version N line to the version N + 1 line, an equivalent

110 The Agile Methods Collection / Jerome Kehrli

http://blog.octo.com/zero-downtime-deployment/

4. DevOps explained

proportion of users are migrated as well.
This way, the load on every production line matches the amount of servers.

At frst, only a few servers are migrated to version N + 1 along with a small subset of
the users. This also allows to test the new release without risking an impact on all
users.
When all servers have eventually been migrated from line N to line N + 1, the
release is fnished and everything can start all over again for release N + 2.

(Source : Les Patterns des Géants du Web – Zero Downtime Deployment -
http://blog.octo.com/zero-downtime-deployment/)

4.4 Collaboration

Agile software development has broken down some of the silos between
requirements analysis, testing and development. Deployment, operations and
maintenance are other activities which have sufered a similar separation from the
rest of the software development process. The DevOps movement is aimed at
removing these silos and encouraging collaboration between development and
operations.
Even with the best tools, DevOps is just another buzzword if you don't have the right
culture.

The primary characteristic of DevOps culture is increased collaboration between the
roles of development and operations. There are some important cultural shifts,
within teams and at an organizational level, that support this collaboration.

111 The Agile Methods Collection / Jerome Kehrli

http://blog.octo.com/zero-downtime-deployment/

4. DevOps explained

This addresses a very important problem that is best illustrated with the following
meme:(Souce : DevOps Memes @ EMCworld 2015 -
http://fr.slideshare.net/bgracely/devops-memes-emcworld-2015)

Team play is so important to DevOps that one could really sum up most of the
methodology's goals for improvement with two C's: collaboration and
communication. While it takes more than that to truly become a DevOps workplace,
any company that has committed to those two concepts is well on its way.

But why is it so difcult ?

4.4.1 The wall of confusion

Because of the wall of confusion :

112 The Agile Methods Collection / Jerome Kehrli

http://fr.slideshare.net/bgracely/devops-memes-emcworld-2015

4. DevOps explained

In a traditional development cycle, the development team kicks things of by
sthrowings a software release sover the walls to Operations.
Operations picks up the release artifacts and begins preparing for their deployment.
Operations manually hacks the deployment scripts provided by the developers or,
most of the time, maintains their own scripts.
They also manually edit confguration fles to reflect the production environment,
which is signifcantly diferent than the Development or QA environments.
At best they are duplicating work that was already done in previous environments, at
worst they are about to introduce or uncover new bugs.

The IT Operations team then embarks on what they understand to be the currently
correct deployment process, which at this point is essentially being performed for
the frst time due to the script, confguration, process, and environment diferences
between Development and Operations.
Of course, somewhere along the way a problem occurs and the developers are called
in to help troubleshoot. Operations claims that Development gave them faulty code.
Developers respond by pointing out that it worked just fne in their environments, so
it must be the case that Operations did something wrong.
Developers are having a difcult time even diagnosing the problem because the
confguration, fle locations, and procedure used to get into this state is diferent
then what they expect. Time is running out on the change window and, of course,
there isn't a reliable way to roll the environment back to a previously known good
state.

113 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

So what should have been an eventless deployment ended up being an all-hands-on-
deck fre drill where a lot of trial and error fnally hacked the production environment
into a usable state.

It always happens this way, always.

Here comes DevOps

DevOps helps to enable IT alignment by aligning development and operations roles
and processes in the context of shared business objectives. Both development and
operations need to understand that they are part of a unifed business process.
DevOps thinking ensures that individual decisions and actions strive to support and
improve that unifed business process, regardless of organizational structure.

Even further, as Werner Vogel, CTO of Amazon, said in 2014 :

"You build it, you run it."

4.4.2 Software Development Process

Below is a simplifed view of how the Agile Software Development Process usually
looks like.

Initially the business representatives work with the Product Owner and the
Architecture Team to defne the software, either through Story Mapping with User
stories or with more complete specifcation.
Then the development team develops the software in short development sprints,
shipping a production ready version of the software to the business users at the end

114 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

of every sprint in order to capture feedback and get directions as often and as much
as possible.
Finally, after every new milestone, the software is deployed for wide usage to all
business lines.

The big change introduced by DevOps is the understanding that operators are the
other users of the software ! and as such they should be fully integrated in the
Software Development Process.
At specifcation time, operators should give their non-functional requirements just as
business users give their functional requirement. Such non-functional requirements
should be handled with same important and priority by the development team.
At implementation time, operators should provide feedback and non-functional tests
specifcations continuously just as business users provides feedback on functional
features.
Finally, operators become users of the software just as business users.

With DevOps, operators become fully integrated in the Software Development
Process.

115 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

4.4.3 Share the Tools

In traditional corporations, teams of operators and teams of developers use specifc,
dedicated and well separated set of tools.
Operators usually don't want do know anything about the dev team SCM system as
well as continuous integration environment. They perceive this as additional work
and fear to be overwhelmed by developer requests if they put their hands on this
systems as well. After all, they have well enough to do by taking care of production
systems.
Developers, on their side, usually have no access to production system logs and
monitoring tools, sometimes due to lack of will on their side, sometimes for
regulation or security concerns.

This needs to change! DevOps is here for that.

(Source : Mathieu Despriee - OCTO Technology - Introduction to DevOps)

One should note that this can be difcult to achieve. For instance for regulation or
security reasons, logs may need to be anonymized on the fly, supervision tools need
to be secured to avoid an untrained and forbidden developer to actually change
something in production, etc. This may take time and cost resources. But the gain in
efciency is way greater that the required investment, and the ROI of this approach
for the whole company is striking.

4.4.4 Work Together

A fundamental philosophy of DevOps is that developers and operations staf must
work closely together on a regular basis.

116 The Agile Methods Collection / Jerome Kehrli

http://www.slideshare.net/OCTOTechnology/introduction-to-devops-28779951

4. DevOps explained

An implication is that they must see one other as important stakeholders and
actively seek to work together.

Inspired from the XP practice sonsite customers, which motivates agile developers to
work closely with the business, disciplined agilists take this one step further with the
practice of active stakeholder participation, which says that developers should work
closely with all of their stakeholders, including operations and support staf.
This is a two-way street: operations and support staf must also be willing to work
closely with developers.

In addition, other collaboration leads:

• Have operators taking part in Agile rituals (Daily scrum, sprint planning, sprint
retro, etc.)

• Have devs taking part in production rollouts

• Share between Dev and Ops objectives of continuous improvement

4.5 Conclusion

DevOps is a revolution that aims at addressing the wall of confusion between
development teams and operation teams in big corporations having large IT
departments where these roles are traditionally well separated and isolated.

117 The Agile Methods Collection / Jerome Kehrli

4. DevOps explained

Again, I've spent two thirds of my ffteen years career working for such big
institutions, mostly fnancial institutions, and I have been able to witness this wall of
confusion on a daily basis. Some sample things I got to hear:

• sIt worked fne on my Tomcat. Sorry but I know nothing about your Websphere
thing. I really can't help you.s (a dev)

• sNo we cannot provide you with an extract of this table from the production
database. It contains confdential customer-related data.s (an ops)

And many more examples such as those every day every day!

Happily DevOps is several years old and increasingly even these very traditional
corporations are moving in the right direction by adopting DevOps principles and
practices. But a lot remains to be done.

Now what about smaller corporations that don't necessarily have split functions
between developers and operators?
Adopting DevOps principles and practices, such as deployment automation,
continuous delivery and feature flipping still brings a lot.

I would summarize DevOps principles this way:

DevOps is simply a step further towards Scaling Agility!

118 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

5. The Lean Startup - A focus on Practices

A few years ago, I worked intensively on a pet project : AirXCell.
What was at frst some framework and tool I had to write to work on my Master
Thesis dedicated to Quantitative Research in fnance, became after a few months
somewhat my most essential focus in life.
Initially it was really intended to be only a tool providing me with a way to have a
Graphical User Interface on top of all these smart calculations I was doing in R. After
my master thesis, I surprised myself to continue to work on it, improving it a little
here and a little there. I kept on doing that until the moment I fgured I was
dedicated several hours to it every day after my day job.
Pretty soon, I fgured I was really holding an interesting software and I became
convinced I could make something out of it and eventually, why not, start a
company.

And of course I did it all wrong.

Instead of fnding out frst if there was a need and a market for it, and then
what should I really build to answer this need, I spent hours every day and most of
my week-ends developing it further towards what I was convinced was the minimum
set of feature it should hold before I actually try to meet some potential customers
to tell them about it.
So I did that for more than a year and a half until I came close to burn-out and send
it all to hell.

Now the project hasn't evolve for three years. The thing is that I just don't want to
hear about it anymore. I burnt myself and I am just disgusted about it. Honestly it is
pretty likely that at the time of reading this article, the link above is not even
reachable anymore.
When I think of the amount of time I invested wasted in it, and the fact that even
now, three years after, I still just don't want to hear anything about this project
anymore, I feel so ashamed. Ashamed that I didn't take a leap backwards, read a few
books about startup creation, and maybe, who knows, discover The Lean Startup
movement before.
Even now, I still never met any potential customer, any market representative. Even
worst: I'm still pretty convinced that there is a need and a market for such a tool. But
I'll never know for sure.

Such stories, and even worst, stories of startups burning millions of dollars for
nothing in the end, happen every day, still today.

Some years ago, Eric Ries, Steve Blank and others initiated The Lean Startup
movement. The Lean Startup is a movement, an inspiration, a set of principles and

119 The Agile Methods Collection / Jerome Kehrli

http://www.airxcell.com/

5. The Lean Startup - A focus on Practices

practices that any entrepreneur initiating a startup would be well advised to follow.
Projecting myself into it, I think that if I had read Ries' book before, or even better
Blank's book, I would maybe own my own company today, around AirXCell or
another product, instead of being disgusted and honestly not considering it for the
near future.
In addition to giving a pretty important set of principles when it comes to creating
and running a startup, The Lean Startup also implies an extended set of Engineering
practices, especially software engineering practices.

This article focuses on presenting and detailing these Software Engineering
Practices from the Lean Startup Movement since, in the end, I believe they can
beneft from any kind company, from initiating startup to well established companies
with Software Development Activities.
By Software Engineering practices, I mean software development practices of course
but not only. Engineering is also about analyzing the features to be implemented,
understanding the customer need and building a successful product, not just writing
code.

5.1. The Lean Startup

The Lean Startup is today a movement, initiated and supported by some key
people that I'll present below.
But it's also a framework, an inspiration, an approach, a methodology with a set of
fundamental principles and practices for helping entrepreneurs increase their odds
of building a successful startup.
Lean Startup cannot be thought as a set of tactics or steps. Don't expect any
checklist (well, at least not only checklists) or any recipe to be applied blindly.

The approach is built around two main objectives:

1. Teaching entrepreneurs how to drive a startup through the process of steering
(Build-Measure-Learn feedback loop).

2. Enabling entrepreneurs to scale and grow the business with maximum
acceleration

Lean Startup Practices

The Lean Startup methodology can be divided in two sets of practices:

1. The steering practices : designed to minimize the total time through the
Build-Measure-Learn feedback loop and

2. The acceleration practices : which allow Lean Startups to grow without
sacrifcing the startup's speed and agility

This is developed further in 5.2 The four steps to the Epiphany.

120 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

5.1.1 Origins

The Lean Movement

Lean thinking is a business methodology that aims to provide a new way to
think about how to organize human activities to deliver more benefts to society and
value to individuals while eliminating waste.
Lean thinking is a new way of thinking any activity and seeing the waste
inadvertently generated by the way the process is organized

The aim of lean thinking is to create a lean enterprise, one that sustains growth
by aligning customer satisfaction with employee satisfaction, and that ofers
innovative products or services proftably while minimizing unnecessary over-
costs to customers, suppliers and the environment.

The Lean Movement fnds its roots in Toyotism and values performance and
continuous improvement. The Lean Movement really rose in the early 90's and
the lean tradition has adopted a number of practices from Toyota's own learning
curve.
Some worth to mention:

• Kaizen (Continuous Improvement) : is a strategy where employees at all
levels of a company work together pro-actively to achieve regular, incremental
improvements to the manufacturing process. The point of Kaizen is that
improvement is a normal part of the job, not something to be done swhen
there is time left after having done everything elses, that should involve the
company as a whole, from the CEO to the assembly line workers.

• Kanban (Visual Billboard) : is a scheduling system and visual management
tool used in Lean Manufacturing to signal steps in their manufacturing
process. The system's highly visual nature allows teams to communicate more
easily on what work needed to be done and when. It also standardizes cues
and refnes processes, which helps to reduce waste and maximize value.

Plus strong emphasizes on Autonomation, Visualization, etc.

The Lean Startup

The author, I should say initial author, of the Lean Startup methodology, Eric Ries,
explains in his book sThe Lean Startup: How Today's Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businessess, that traditional management
practices and ideas are not adequate to tackle the entrepreneurial challenges of
startups.

By exploring and studying new and existing approaches, Ries found that adapting
Lean thinking to the context of entrepreneurship would allow to discern between
value-creating activities versus waste.

121 The Agile Methods Collection / Jerome Kehrli

https://en.wikipedia.org/wiki/Kanban
https://en.wikipedia.org/wiki/Kaizen
https://en.wikipedia.org/wiki/Lean_thinking

5. The Lean Startup - A focus on Practices

Thus, Ries, decided to apply lean thinking to the process of innovation. After its
initial development and some refnement, as he states, the Lean Startup
represents a new approach to creating continuous innovation that builds on many
previous management and product development ideas, including lean
manufacturing, design thinking, customer development, and agile development.

5.1.2 The movement

I would highly recommend this enlightening article - The History Of Lean Startup -
that does a pretty great job explaining how and why the following guys got together
and initiated the Lean Startup Movement (aside from a few things I do not agree
with).

Blank, Ries, Osterwalder and Maurya are the founders or initiators of the Lean
Startup Movement. Eric Ries is considered as the leader of the movement, while
Steve Blank considers himself as its godfather.
Osterwalder and Maurya's work on business models is considered to fll a gap in Ries
and Blank's work on processes, principles and practices. In Steve Blank's sThe four
Steps the the Epiphanys, the business model section is a vague single page.
Furtherly, Maurya's sRunning Leans magnifcently completes Blank's work on
Customer Development. We'll get to that.

5.1.3 Principles

In my opinion, the most fundamental aspect of Lean Startup is the Build-Measure-
Learn loop, or, in the context of the Customer Development Process, the Customer
Discovery - Customer Validation - Re-adapt the product loop.

122 The Agile Methods Collection / Jerome Kehrli

http://www.salimvirani.com/the-history-of-leanstartup-and-how-to-make-sense-of-it-all/

5. The Lean Startup - A focus on Practices

The idea is to be able to loop in laboratory mode, mostly with prototypes and
interviews, in an iterative research process, with as little costs as possible, about the
product to be developed. A startup should spend as little investment as possible in
terms of product development as long as it has no certainty in regards to the
customer needs, the right product to be developed, the potential market, etc.
This is really key, before hiring employees and starting to develop a product, the
entrepreneur should have certainty about the product to be developed and its
market.
Premature scaling is the immediate cause of the Death Spiral.

Before digging any further into this, below are the essential principles that
characterize The Lean Startup approach, as reported by Eric Ries' book.

Entrepreneurs are everywhere

You don't have to work in a garage to be in a startup. The concept of
entrepreneurship includes anyone who works within Eric Ries' defnition of a startup,
which I like very much BTW.
His defnition is as follows :

A startup is a human institution designed to create new products and
services under conditions of extreme uncertainty.

That means entrepreneurs are everywhere and the Lean Startup approach can work
in any size company, even a very large enterprise, in any sector or industry.

Entrepreneurship is management

A startup is an institution, not just a product, and so it requires a new kind of
management specifcally geared to its context of extreme uncertainty.
In fact, Ries believes sentrepreneurs should be considered a job title in all modern
companies that depend on innovation for their future growth

Validated learnings

Startups exist not just to make stuf, make money, or even serve customers. They
exist to learn how to build a sustainable business. This learning can be validated
scientifcally by running frequent experiments that allow entrepreneurs to test each
element of their vision.

Innovation accounting

To improve entrepreneurial outcomes and hold innovators accountable, we need to
focus on the boring stuf: how to measure progress, how to set up milestones, and
how to prioritize work. This requires a new kind of accounting designed for startups-
and the people who hold them accountable.

123 The Agile Methods Collection / Jerome Kehrli

https://steveblank.com/2009/09/07/the-customer-development-manifesto-the-death-spiral-part-3/

5. The Lean Startup - A focus on Practices

Build-Measure-Learn

The fundamental activity of a startup is to turn ideas into products, measure how
customers respond, and then learn whether to pivot or persevere. All successful
startup processes should be geared to accelerate that feedback loop.

5.1.4 The Feedback Loop

The feedback loop is represented as below.
The fve-part version of the Build-Measure-Learn schema helps us see that the real
intent of building is to test sideass - not just to build blindly without an objective.
The need for sdatas indicates that after we measure our experiments we'll use the
data to further refne our learning. And the new learning will influence our next
ideas. So we can see that the goal of Build-Measure-Learn isn't just to build things,
the goal is to build things to validate or invalidate the initial idea.

Again, the goal of Build-Measure-Learn is not to build a fnal product to ship or even
to build a prototype of a product, but to maximize learning through incremental
and iterative engineering.
In this case, learning can be about product features, customer needs, distribution
channels, the right pricing strategy, etc.
The sbuilds step refers to building an 5.3.2.1 MVP (Minimal Viable Product).
It's critical here to understand that an MVP does not mean the product with fewer
features. Instead, an MVP should be seen as the simplest thing that you can show to

124 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

customers to get the most learning at that point in time. Early on in a startup, an
MVP could well simply be a set of Powerpoint slides with some fancy animations, or
whatever is sufcient to demonstrate a set of features to customers and get
feedback from it. Each time one builds an MVP one should also defne precisely what
one wants to test/measure.
Later, as more is learned, the MVP goes from low-fdelity to higher fdelity, but the
goal continues to be to maximize learning not to build a beta/fully featured
prototype of a product or a feature.

In the end, the Build-Measure-Learn framework lets startups be fast, agile and
efcient.

5.1.5 Business Model Canvas and Lean Canvas

Evolution on Business Models and the relative processes were surprisingly missing or
poorly addressed from Ries' and Blank's initial work.
Fortunately, Osterwalder and Maurya caught up and flled the gap.

Business Model Canvas

The Business Model Canvas is a strategic management template invented by
Alexander Osterwalder and Yves Pigneur for developing new business models or
documenting existing ones.
It is a visual chart with elements describing a company's value proposition,
infrastructure, customers, and fnances. It assists companies in aligning their
activities by illustrating potential trade-ofs.

Lean Canvas

The Lean Canvas is a version of the Business Model Canvas adapted by Ash Maurya
specifcally for startups. The Lean Canvas focuses on addressing broad customer
problems and solutions and delivering them to customer segments through a unique
value proposition.

125 The Agile Methods Collection / Jerome Kehrli

https://en.wikipedia.org/wiki/Business_Model_Canvas

5. The Lean Startup - A focus on Practices

So how should one use the Lean Canvas?

1. Customer Segment and Problem
Both Customer Segment and Problem sections should be flled in together.
Fill in the list of potential customers and users of your product, distinguish
customers (willing to pay) clearly from users, then refne each and every
identifed customer segment. Be careful not no try to focus on a too broad
segment at frst, think of Facebook whose frst segment was only Harvard
students.
Fill in carefully the problem encountered by your identifed customers.

2. UVP - Unique Value Proposition
The UVP is the unique characteristic of your product or your service making it
diferent from what is already available on the market an that makes it worth
the consideration of your customers. Focus on the main problem you are
solving and what makes your solution diferent.

3. Solution
Filling this is initially is tricky, since knowing about the solution for real
requires trial and error, build-measure-learn loop, etc. In an initial stage one
shouldn't try to be to precise here and keep things pretty open.

4. Channels
This consists in answering: how should you get in touch with your users and

126 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

customers ? How do you get them to know about your product ? Indicate
clearly your communication channels.

5. Revenue Stream and Cost Structure
Both these sections should also be flled in together.
At frst, at the time of the initial stage of the startup, this should really be
focused on the costs and revenues related to launching the MVP (how to
interview 50 customers ? Whats the initial burn rate ? etc.)
Later this should evolve towards an initial startup structure and focus on
identifying the break-even point by answering the question : how many
customers are required to cover my costs ?

6. Key Metrics
Ash Maurya refers to Dave McClure Pirate Metrics to identify the relevant KPIs
to be followed :
Acquisition - How do user fnd you ?
Activation - Do user have a great frst experience ?
Retention - Do users come back ?
Revenue - How do you make money ?
Referral - Do users tell others ?

7. Unfair Advantage
This consists in indicating the adoption barriers as well as the competitive
advantages of your solution. An unfair advantage is defned as something that
cannot be copied easily neither bought.

Lean Startup : test your plan !

Using the new sBuild - Measure - Learns diagram, the question then becomes, sWhat
hypotheses should I test?s. This is precisely the purpose of the initial Lean Canvas,

And it brings us to another defnition of a startup:

A startup is a temporary organization designed to search for a repeatable
and scalable business model.

127 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

And once these hypotheses fll the Lean Canvas (Or Business Model Canvas), the key
approach is to run experiments. This leads us to the next section.

5.1.6 Customer Development

The Customer Development process is a simple methodology for taking new venture
hypotheses and getting out of the building to test them. Customer discovery (see
below) captures the founders' vision and turns it into a series of business model
hypotheses. Then it develops a series of experiments to test customer reactions to
those hypotheses and turn them into facts. The experiments can be a series of
questions you ask customers. Though, most often an MVP to help potential
customers understand your solution accompanies the questions.

Startups are building an MVP to learn the most they can, not to get a prototype!

The goal of designing these experiments and minimal viable products is not to get
data. The data is not the endpoint. Anyone can collect data. The goal is to get
insight. The entire point of getting out of the building is to inform the founder's
vision.
The insight may come from analyzing customer answers, but it also may come from
interpreting the data in a new way or completely ignoring it when realizing that the
idea is related to a completely new and disruptive market that even doesn't exist
yet.

Customer Development instead of Product Development

More startup fail from a lack of customers rather than from a failure of Product
Development.

The Customer Development model delineates all the customer-related activities in
the early stage of a company into their own processes and groups them into four
easy-to-understand steps: Customer Discovery, Customer Validation, Customer
Creation, and Company Building.
These steps mesh seamlessly and support a startup's ongoing product development
activities. Each step results in specifc deliverables and involves specifc practices.

As its name should communicate, the Customer Development model focuses on
developing customers for the product or service your startup is building. Customer
Development is really about fnding a market for your product. It is built upon the
idea that the founder has an idea but he doesn't know if the clients he imagines will
buy. He needs to check this point and it is better if he does it soon.

128 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

5.2 The four steps to the Epiphany

Shortly put, Steve Blank proposes that companies need a Customer Development
process that complements, or even in large portions replaces, their Product
Development Process. The Customer Development process goes directly to the
theory of Product/Market Fit.
In sThe four steps to the Epiphanys, Steve Blank provides a roadmap for how to get
to Product/Market Fit.

5.2.1 Overview

The Path to Disaster: The Product Development Model

The traditional product development model has four stages:

1. concept/seed,

2. product development,

3. beta test,

4. and launch.

That product development model, when applied to startups, sufers from a lot of
flaws. They basically boil down to:

• Customers were nowhere in that flow chart

• The flow chart was strictly linear

• Emphasis on execution over learning

• Lack of meaningful milestones for sales/marketing

• Treating all startups alike

What's the alternative? Before we get to that, one fnal topic is the technology life
cycle adoption curve, i.e. adoption happens in phases of early adopters (tech
enthusiasts, visionaries), mainstream (pragmatists, conservatives), and skeptics.
Between each category is a chasm, the largest is between the early adopters and
the mainstream.
Crossing the chasm is a success problem. But you're not there yet, scustomer
developments lives in the realm of the early adopter.

The Path to Epiphany: The Customer Development Model

Most startups lack a process for discovering their markets, locating their frst
customers, validating their assumptions, and growing their business.
The Customer Development Model creates the process for these goals.

129 The Agile Methods Collection / Jerome Kehrli

https://en.wikipedia.org/wiki/Product/market_fit

5. The Lean Startup - A focus on Practices

5.2.2 A 4 steps process

The four stages the Customer Development Model are: customer discovery,
customer validation, customer creation, and company creation.

1. Customer discovery: understanding customer problems and needs

2. Customer validation: developing a sales model that can be replicated

3. Customer creation / Get new Customers: creating and driving end user
demand

4. Customer building / Company Creation: transitioning from learning to
executing

We can represent them as follows:

I won't go any further in this article in describing these steps, their purpose and
reasons.
To be honest Blank's book is pretty heavy and not very accessible. Happily Blank's
did a lot of presentations around his book that one can fnd on youtube or elsewhere.
In addition, there are a lot of excellent summaries and text explanations available
online on Blank's book and I let the reader refer to this material should he want more
information.

Instead, I want to focus in this article on the Software Engineering Practices
inferred from The Lean Startup approach, since, again, I believe they are very
important for any kind of corporation with an important Software Development
activity.
And yet again, Software Engineering practices go beyond solely Software

130 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

Development practices, but cover every activity in the company aimed at identifying
and developing the product.

5.3 Lean startup practices

So I want to present the most essentials principles and practices introduced and
discussed by the Lean Startup approach.
These principles and practices are presented on the following schema attached to
the stages of the Customer Development process where I think they make more
sense:

Important notes

• I attached the practices to the step where I think they make more sense,
where I think they bring the most added value or should be introduced. But
bear in mind that such a categorization is highly subjective and questionable.
If you yourself believe some practices should be attached to another step, well
just leave a comment and move on.

• Also, there are other practices of course. I mention here and will be discussing
below the ones that seem the most appealing to me, myself and I. Again my
selection is highly subjective and personal. If you think I am missing
something important, just leave a comment and move on.

The rest of this paper intends to describe all these engineering - mostly software
engineering - practices since, again, at the end of the day, I strongly believe that

131 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

they form the most essential legacy of the Lean Startup movement and that they
can beneft any kind of company, not only startups.

5.3.1 Customer Discovery

Customer Discovery, focuses on understanding customer problems and needs. Its
really about searching for the Product-Solution Fit, turning the founders' initial
hypotheses about their market and customers into facts.
The Problem-Solution Fit occurs when entrepreneurs identify relevant insights that
can be addressed with a suggested solution. As Osterwalder describes it, this ft
happens when there is evidence that customers care about certain problems that
need to be solved or needs, and, there is a value proposition designed that
addresses those needs.

In Customer Discovery the startup aims at understanding customer problems and
needs and, also, to ideate potential solutions that could be valuable based on the
fndings. Similarly, Osterwalder calls these problems and needs as jobs, pains and
gains.

The three practices I want to emphasize at this stage are as follows:

132 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

5.3.1.1 Get out of the building

If you're not Getting out of the Building, you're not doing Customer
Development and Lean Startup.
There are no facts inside the building, only opinions.

If you aren't actually talking to your customers, you aren't doing Customer
Development. And talking here is really speaking, with your mouth. Preferably in-
person, but if not, a video call would work as well, messaging or emailing doesn't.

As Steve Blank said sOne good customer development interview is better for
learning about your customers / product / problem / solution / market than fve
surveys with 10'000 statistically signifcant responses.s

The problem here is that tech people, especially software engineers, try to avoid
going out of the building as much as possible. But this is so important. Engineers
need to fght against their nature and get out of the building and talk to customers
as much as possible; fnd out who they are, how they work, what they need and
what your startup needs to do, to build and then sell its solution.

In fact, so many engineers, just as myself, spent months of working on a prototype
or even a complete solution, sometimes for several years, before actually meeting a
frst potential customer, and discovering the hard way that all this work has been for
nothing.
As hard as it is, Engineers should not work one one single line of code, even not one
single powerpoint presentation before having met at least a twenty potential
customers or representatives and conducted formal 5.3.1.2 Problem interview.
After that, it's still not a question of writing lines of code, it's a question of investing
a few hours - not more ! - in designing a demonstrable prototype for the next set of
interviews, the 5.3.1.3 Solution interview. That prototype doesn't need to be actually

133 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

working, it should only be demonstrable. A powerpoint presentation with clickable
animations works perfectly!

Again, getting out of the building is not getting in the parking lot, it's really about
getting in front of the customer.
At the end of the day, it's about Customer Discovery. And Customer Discovery is not
sales, it's a lot of listening, a lot of understanding, not a lot of talking.

A difculty that people always imagine is that young entrepreneurs with an idea
believe that they don't know anybody, so how to fgure out who to talk to ?
But at the time of Linkedin, facebook, twitter, it's hard to believe one cannot fnd a
hundred of people to have a conversation with.

And when having a conversation with one of them, whatever else one's asking
(5.3.1.2 Problem interview, 5.3.1.3 Solution interview), one should ask two very
important fnal questions:

1. sWho else should I be talking to ?s
And because you're a pushy entrepreneur, when they give you those names,
you should ask sDo you mind if I sit here while you email them introducing me
?s

2. sWhat should I have really asked you ?s
And sometimes that gets into another half hour related to what the customer
is really worried about, what's really the customer's problem.

Customer Discovery becomes really easy once you realize you don't need to get the
world's best frst interview.
In fact its the sum of these data points over time, it's not one's just going to be doing
one and one wants to call on the highest level of the organization.
In fact you actually never want to call on the highest level of the organization
because you're not selling yet, you don't know enough.
What one actually wants is to understand enough about the customers, their
problems and how they're solving it today, and whether one's solution is something
they would want to consider.

A few hints in regards to how to get out of the building:

134 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

5.3.1.2 Problem interview

Problem Interview is Ash Maurya's term for the interview you conduct to validate
whether or not you have a real problem that your target audience has.

In the Problem Interview, you want to fnd out 3 things:

1. Problem - What are you solving? - How do customers rank the top 3
problems?

2. Existing Alternatives - Who is your competition? - How do customers solve
these problems today?

3. Customer Segments - Who has the pain? - Is this a viable customer
segment?

Talking to people is hard, and talking to people in person is even harder. The best
way to do this is building a script and sticking to it. Also don't tweak your script until
you've done enough interviews so that your responses are consistent.
The main point is to collect the information that you will need to validate your

135 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

problem, and to do it face-to-face, either in-person or by video call. It's actually
important to see people and be able to study their body language as well.

The interview script - at least the initial you should follow until you have enough
experience to build yours - is as follows:

If you have to remember just three rules for problem interviews here they are:
1. Do not talk about your business idea or product. You are here to understand a

problem, not imagine or sell a solution yet.

2. Ask about past events and behaviours

3. No leading question, learn from the customer

After every interview, take a leap backwards, analyze the answers, make sure you
understand everything correctly and synthesize the results.
After a few dozen of interviews, you should be a able to make yourself a clear
understanding of the problem and initiate a few ideas regarding the solution to it.
Finding and validating your solution brings us to the next topic: the Solution
Interview.

And what if a customer tells you that the issues you thought are important really
aren't? Learn that you have gained important data.

5.3.1.3 Solution interview

In the Solution Interview, you want to fnd out three things:

136 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

1. Early Adopters - Who has this problem? - How do we identify an early
adopter?

2. Solution - How will you solve the problems? - What features do you need to
build?

3. Pricing/Revenue - What is the pricing model? - Will customers pay for it?

The key point here is to understand how to come up with a solution ftting the
problem, step by step getting to the right track with your prototype and also
understanding what could be a pricing model.

A demo is actually important. Many products are too hard to understand without
some kind of demo. If a picture is worth a thousand words, a demonstration is
probably worth a million.

Identifying early adopters is also key.
Think of something: if one of the guys you meet tells you that you defnitely hold
something, ask him if he would want to buy it. If he says he would defnitely buy it
when it's ready and available, ask him if he would commit to this. If he says he
commits to this, ask him if he would be ready to pay half of it now and have it when
its ready, thus becoming a partner or an investor.
If you fnd ten persons committing on already paying for the solution you draw, you
may not even need to search for investors, you already have them. And that is the
very best proof you can fnd that your solution is actually something.
And customers or partners are actually the best possible type of investors.

137 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

5.3.2 Customer Validation

The second step of the Customer Development model, Customer Validation, focuses
on developing a sales model that can be replicated. The sales model is validated by
running experiments to test if customers value how the startup's products and
services are responding to the customer problems and needs identifed during the
previous step.
If customers show no interest, then the startup can 5.3.3.2 Pivot to search for a
better business model.

Customer Validation needs to happen to validate if the customers really care about
the products and services that could be valuable to them. This second step is hence
really about Product-Market Fit which occurs when there is a sales model that works,
when customers think the proposed solution is valuable to them. This should be
proven by evidence that customers care about the products and services that
conform the value proposition.

Blank believes that product-market ft needs to happen before moving from
Customer Validation to Customer Creation (or the Search Phase to the Execution
Phase).

The two practices I want to emphasize at this stage are as follows:

138 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

5.3.2.1 MVP

The Minimum Viable Product is an engineering product with just the set of
features required to gather validated learnings about it - or some of its features -
and its continuous development.
This notion of Minimum Feature Set is key in the MVP approach.

The key idea is that it makes really no sense developing a full and fnalized product
without actually knowing what will be the market reception and if all of it is actually
worth the development costs.
Gathering insights and directions from an MVP avoids investing too much in a
product based on wrong assumptions. Even further, The Lean Startup methodology
seeks to avoid assumptions at all costs, see 5.1.4 The Feedback Loop and 5.3.3.1
Metrics Obsession.

The Minimum Viable Product should have just that set of initial features strictly
required to have a valid product, usable for its very initial intent, and nothing more.
In addition these features should be as minimalist as possible but without
compromising the overall User Experience. A car should move, a balloon should be
round and bounce, etc.
when adopting an MVP approach, the MVP is typically put at disposal at frst only to
early adopters, these customers that may be somewhat forgiving for the snakeds
aspect of the product and more importantly that would be willing to give feedback
and help steer the product development further.

Eric Ries defnes the MVP as:

"The minimum viable product is that version of a new product a team uses
to collect the maximum amount of validated learning about customers with

the least efort."

The defnition's use of the words maximum and minimum means it is really not
formulaic. In practice, it requires a lot of judgment and experience to fgure out, for
any given context, what MVP makes sense.

The following chart is pretty helpful in understanding why both terms minimum and
viable are equally important and why designing an MVP is actually difcult:

139 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

When applied to a new feature of any existing product instead of a brand new
product, the MVP approach is in my opinion somewhat diferent. It consists of
implementing the feature itself not completely; rather, a mock-up or even some
animation simulating the new feature should be provided.
The mock-up or links should be properly instrumented so that all user reactions are
recorded and measured in order to get insights on the actual demand of the feature
and the best form it should take (5.3.3.1 Metrics Obsession),
This is called a deploy frst, code later method.

Fred Voorhorst' work does a pretty good job in explaining what an MVP is:

140 The Agile Methods Collection / Jerome Kehrli

http://www.expressiveproductdesign.com/minimal-viable-product-mvp/

5. The Lean Startup - A focus on Practices

(Fred Voorhorst - Expressive Product Design -
http://www.expressiveproductdesign.com/minimal-viable-product-mvp/)

Developing an MVP is most defnitely not the same as developing a sequence of
elements which maybe, eventually combine into a product. A single wheel is not of
much interest to a user wanting a personal transporter like a car, as illustrated by
the frst line.
Instead, developing an MVP is about developing the vision. This is not the same as
developing a sequence of intermediate visions, especially not, if these are valuable
products by themselves. As an example, a skateboard will likely neither interest
someone in search for a car, as illustrated by the second line.

Developing an MVP means developing a sequence of prototypes through which you
explore what is key for your product idea and what can be omitted.

5.3.2.2 Fail Fast

The key point of the sfail fasts principle is to quickly abandon ideas that aren't
working. And the big difculty of course is not giving up too soon on an idea that
could potentially be working. should one fnd the right channel, the right approach.
Fail fast means getting out of planning mode and into testing mode, eventually for
every component, every single feature, every idea around your product or model of
change. Customer development is the process that embodies this principle and
helps you determine which hypotheses to start with and which are the most critical
for your new idea.

It really is OK to fail if one knows the reason of the failure, and that is where most
people go wrong. Once a site or a product fails then one needs to analyze why it
bombed. It's only then that one can learn from it.
The key aspect here is really learning. And learning comes from experimenting,
trying things, measuring their success and adapting.
An entrepreneur should really be a pathologist investigating a death and fnding the
cause of the failure. Understanding the cause of a failure can only work if the
appropriate measures and metrics around the experiment are in place.

141 The Agile Methods Collection / Jerome Kehrli

http://www.expressiveproductdesign.com/minimal-viable-product-mvp/

5. The Lean Startup - A focus on Practices

Now failing is OK as long as we learn from it and as long as we fail as fast as
possible. Again, the whole lean idea is to avoid waste as much as possible and
there's no greater waste than keeping investing on something that can ultimately
not work. Failing as fast as possible, adapting the product, pivoting the startup
towards its next approach as soon as possible is key.
But then again, the big difculty is not to give up too soon on something that could
possible work.

Fail fast,
Learn faster,

Succeed sooner !

So how do you know when to turn, when to drop an approach and adapt your
solution ? How can you know it's not too soon?

Measure, measure, measure of course!

The testing of new concepts, failing, and building on failures are necessary when
creating a great product.
The adage, sIf you can't measure it, you can't manage its is often used in
management and is very important in The Lean Startup approach. By analyzing
data, results can be measured, key lessons learned, and better initiatives employed.

5.3.3 Re-adapt the product

Customer development isn't predictable; you don't know what you're going to learn
until you start. You'll need the ability to think on your feet and adapt as you uncover
new information.
Adapting, in my opinion, is really re-adapting the product to the new situation, to the
new knowledge you gained from the previous steps. And re-adapting the product,
your solution, your approach is pivoting.

But I want to emphasize here that pivoting, or re-adapting the product, should only
happen with the right data, the precise insights that give a clear new direction.
Metrics and insight are essential.

The key practices here are as follows:

142 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

5.3.3.1 Metrics Obsession

In the build-measure-learn loop, there is measure ... The Lean Startup makes from
measuring everything an actual obsession. And I believe that this is a damn' good
thing.
Think of it: what if you have an idea regarding a new feature or an evolution of your
product and you don't already have the metrics that can help you take a sound and
enlightened decision? You'll need to introduce the new measure and wait until you
get the data. Waiting is not good for startups.

This is why I like thinking of it as a Metrics Obsession. Measure everything,
everything you can think of!

And repeat a hundred times:

I will never ever again think that
Instead I will measure that ...

143 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

Or as Edward Deming said :

"In god we trust, all others must bring data"

Imagine you work on a website. You should enhance your backend to measure, at
least: amount of times a page has been displayed, count of users and diferent users
displaying the pages, amount of times a link or button has been clicked, by who it
has been clicked, how much time after the containing page has been displayed,
what is the user think time between 2 actions, what is the path of navigation from
each and every user (actually build the graph and the counts along the branches),
etc.
Measure everything! Don't hesitate to measure something you do not see any use
for now. Sooner or later you will fnd a usage for that metrics, and that day, you
better have it.

How to choose good metrics ?

Honestly there is no magic silver bullet and it can in fact be pretty difcult to pick up
the right metric that would be most helpful to validate a certain hypothesis.
However, metrics should at all cost respect the three A's. Good metrics

• are actionable,

• can be audited

• are accessible

144 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

An actionable metric is one that ties specifc and repeatable actions to observed
results. The actionable property of picked up metrics is important since it prevents
the entrepreneur from distorting the reality to his own vision. We speak of
Actionable vs. Vanity Metrics.
Meaningless metrics such as sHow many visitors ?s, sHow many followers ?s are
vanity metrics and are useless.

Ultimately, your metrics should be useful to measure progress against your own
questions.

5.3.3.2 Pivot

In the process of learning by iterations, a startup can discover through feld returns
with real customers that its product is either not adapted to the identifed need, that
it does not meet that need.
However, during this learning process, the startup may have identifed another need
(often related to the frst product) or another way to answer the original need.
When the startup changes its product to meet either this new need or the former
need in a diferent way, it is said to have performed a Pivot.
A startup can pivot several times during its existence.

A pivot is ultimately a change in strategy without a change in vision.
It is defned as a structured course correction designed to test a new
fundamental hypothesis about the product, business model and engine of growth.

The vision is important. A startup is created because the founder has a vision and
the startup is really built and organized around this vision. If the feedback from the
feld compromises the vision, the startup doesn't need to pivot, it needs to resign,
cease its activities and another startup, another organization aligned to the new
vision should perhaps be created.

There are various kind of pivots:

• Zoom-In : a single feature becomes the whole product

• Zoom-Out : the whole initial product becomes a feature of a new product

• Customer segment : Good product, bad customer segment

• Customer need : Repositioning, designing a completely new product (still
sticking to the vision)

• Platform : Change from an application to a platform, or vice versa

• Many others ...

Pivot or Persevere

145 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

Since entrepreneurs are typically emotionally attached to their product ideas, there
is a tendency to hang in there too long. This wastes time and money. The pivot or
persevere process forces a non-emotional review of the hypothesis.

Unsurprisingly, knowing when to pivot is an art, not a science. It requires to be well
thought through and can be pretty complicated to manage.
At the end of the day, knowing when to pivot or persevere requires experience and,
more importantly, metrics: proper performance indicators giving the entrepreneur
clear insights about the market reception of the product and the ftting of customer
needs.

One thing seems pretty clear though, if it becomes clear to everyone in the company
that another approach would better suit the customer needs, the startup needs to
pivot, and fast.

5.3.4 Get new customers

The third step, the Customer Creation step, to sstart building end user demand to
scale the businesss, is the precursor to achieve Business Model Fit. Therefore, the
Business Model Fit stage can be understood as validating the value for the company,
where as the product-market ft focuses on validating the value for the customer.

The set of practices I deem important here are as follows:

146 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

Again, attaching some of these practices here or in the next and last step can be
subjective. In my opinion, the startup needs to embrace this Lean and Agile
principles and practices before it attempts to scale its organization, hence the
reason why I consider these practices at this stage.

5.3.4.1 Pizza Teams

Jef Bezos, Amazon's founder and CEO, always said that a team size shouldn't be
larger than what two pizzas can feed, two american pizzas, not italian, needless to
say.
This makes it 7 +/- 2 co-workers inside an Agile Team.

147 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

More communication isn't necessarily the solution to communication problems - it's
how it is carried out. Compare the interactions at a small dinner - or pizza - party
with a larger gathering like a wedding. As group size grows, you simply can't have as
meaningful of a conversation with every person, which is why people start clumping
of into smaller clusters to chat.
For Bezos, small teams make it easier to communicate more efectively rather than
more, to stay decentralized and moving fast, and encourage high autonomy and
innovation. Here's the science behind why the two-pizza team rule works.

As team size grows, the amount of one-on-one communication channels tend
to explode, following the formula to compute number of links between people
which is n (n - 1) / 2 .
This is O(n2) (Hello Engineers) and is really a combinatorial explosion.
If you take a basic two-pizza team size of, say, 6. That's 15 links between everyone.
Double that group for a team of 12. That shoots up to 66 links.
The cost of coordinating, communicating, and relating with each other explodes to
such a degree that it lowers individual and team productivity.

Under fve co-workers, the team becomes fragile to external events and lacks
creativity.
Beyond ten, communication loses efciency, cohesion diminishes, parasitism
behaviors and power struggles appear, and the performance of the team decreases
very rapidly with the number of members.

The right size for an Agile Team is 7 +/- 2 persons.

5.3.4.2 Feature Teams

Let's frst have a look at what is the other model: Component Teams.

Component Teams

Components Teams are the usual, the legacy model. In large IT organizations, there
is usually a development team dedicated to the front-end, the Graphical User
Interface, another team dedicated to developing the Java (Or Cobol :-) backend, a
team responsible to design and maintain the database, etc.
A Component Team is defned as a development Team whose primary area of
concern is restricted to a specifc component, or a set of components from a specifc
layer or tiers, of the system.
Prior to Agile, most large-scale systems were developed following the component
team approach and the development teams were organized around components and
subsystems.

The most essential drawback of Component Teams is obvious : most new features
are spread among several components, creating dependencies that require
cooperation between these teams. This is a continuing drag on velocity, as the

148 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

individual teams spend much of their time discussing dependencies between teams
and testing, assessing, fxing behaviour across components rather than delivering
end user value as efciently as possible.
An important direct consequence of this dependency is that any given feature can
only be delivered as fast as can be delivered the component changes by the slowest
(or most overloaded) component team.

Feature Teams

As such, in an Agile Organization, where the whole company is organized around
Feature backlogs or Kanban, it makes a lot more sense to organize the various
development teams in Feature Teams.
Feature teams are organized around user-centered functionality. Each and every
team, is capable of delivering end-to-end user value throughout the software stack.
Feature teams operate primarily with user stories, refactors and spikes. However,
technical stories may also occasionally occur in their backlog.
A feature team is defned as a long-lived, cross-functional, cross-component team
that completes many end-to-end customer features, one by one.

More Information on Feature Teams:

• From SAFe - Scaled Agile Framework

• From LeSS - Large Scale Scrum framework

The diference between both models is well illustrated this way:

(Source : https://less.works/less/structure/feature-teams.html)

A pretty good summary of the most essential diferences between both models is
available on the LeSS web site:

149 The Agile Methods Collection / Jerome Kehrli

https://less.works/less/structure/feature-teams.html
https://less.works/less/structure/feature-teams.html
http://www.scaledagileframework.com/features-and-components/

5. The Lean Startup - A focus on Practices

component team feature team
optimized for delivering the maximum

number of lines of code
optimized for delivering the maximum

customer value
focus on increased individual productivity by

implementing 'easy' lower-value features
focus on high-value features and

system productivity (value throughput)
responsible for only part of a customer-centric

feature
responsible for complete customer-

centric feature
traditional way of organizing teams - follows

Conway's law
'modern' way of organizing teams -

avoids Conway's law
leads to 'invented' work and a forever-

growing organization
leads to customer focus, visibility, and

smaller organizations
dependencies between teams leads to

additional planning
minimizes dependencies between

teams to increase fexibility
focus on single specialization focus on multiple specializations

individual/team code ownership shared product code ownership
clear individual responsibilities shared team responsibilities

results in 'waterfall' development supports iterative development
exploits existing expertise; lower level of

learning new skills
exploits flexibility; continuous and

broad learning
works with sloppy engineering practices-

efects are localized
requires skilled engineering practices-

efects are broadly visible
contrary to belief, often leads to low-quality

code in component
provides a motivation to make
code easy to maintain and test

seemingly easy to implement seemingly difcult to implement

(Source : https://less.works/less/structure/feature-teams.html)

The Analogy with a Star Trek team makes surprisingly and funnily a lot of sense.

150 The Agile Methods Collection / Jerome Kehrli

https://less.works/less/structure/feature-teams.html

5. The Lean Startup - A focus on Practices

Think of a Star Trek spaceship. The crew is constituted by Commanding Ofcers,
Medical Ofcers, Medical Staf, Engineering Ofcers, Engineering Staf, Science
Ofcers, Scientists, etc.
These diferent functions, competencies and responsibilities are grouped together to
work towards a common objective, its continuing mission: to explore strange new
worlds, to seek out new life and new civilizations, to boldly go where no one has
gone before.

Now imagine if Starfleet had instead put all the Commanding Ofcers in one ship, all
medical staf in another ship, and so on. It would have been pretty difcult to make
those ships actually do anything signifcant, don't you think ?
This is precisely the situation of Component Teams.
Just as with a Star Trek Ship, it makes a lot more sense to put all the required
competencies together in a team (or ship) and assign them a clear objective,
implementing that feature throughout the technology and software stack.

5.3.4.3 Build vs. Buy

This dilemma is as old as the world of computers: is it better to invest in developing
a software that is best suited to your needs or should you rely on a software package
or third party product that embed the capitalization and R&D of another software
editor in order to - apparently - speed up your time to market ?

In order to be as efcient as possible on the build-measure-learn loop, it is essential
to master your development process. For this reason, tailor made solutions are
better because the adoption of a third party software package often requires to

151 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

invest a lot of resources not in the development of your product, but instead in the
development of workarounds, hacks and patches to correct all the points on which
the software package is poorly adapted to the specifc and precise behavior required
by your own product feature.

In the case of a startup, this aspect is catastrophic. Investing in the development of
hacks and workarounds around a third party product, a product that one has in
addition to pay for, sometimes depending on the number of machine or users,
instead of developing the startup's core business, should just not happen.

This cost aspect is particularly critical of course when scaling the solution. When one
multiplies the processors and the servers, the invoice climbs very quickly and not
necessarily linearly, and the costs become very visible, no matter whether it is a
business software package or an infrastructure brick.

This is precisely one of the arguments that led LinkedIn to gradually replace Oracle
with a home solution: Voldemor.

Most technologies that make the buzz today in the world of high performance
architectures are the result of developments made by the Web Giants that have
been released as Open Source: Cassandra, developed by Facebook, Hadoop and
HBase inspired by Google and developed at Yahoo, Voldemort by LinkedIn, etc.

Open-Source software is cool

Of course the cost problem doesn't apply to Open-Source and free to use software.
In addition, instead of developing workarounds and patches around Open-Source
Software, you can instead change its source, fork it and maintain your diferent
baseline while still benefting from the developments made on the ofcial baseline
by merging it frequently.

At the end of the day, integrating an Open-Source software, in contrary to Editor /
Closed Source Software, is pretty closed to developing it on your own, as long as you
have the competencies to maintain it on your own should you need to.
Open-Source software is cool, go for it!

5.3.4.4 A/B Testing

A/B testing is a marketing technique that consists in proposing several variants of
the same object that difer according to a single criterion (for example, the color of a
package) in order to determine the version which lead to the best appreciation and
acceptance from consumers.
A / B testing is used to qualify all kinds of multivariate tests.

An A/B test evaluates the respective performance of one or more partially or totally
diferent versions of the same product or functionality by comparing them to the
original version. The test consists in creating modifed versions of the functionality

152 The Agile Methods Collection / Jerome Kehrli

5. The Lean Startup - A focus on Practices

by modifying as many elements as desired.
The idea is to split the visitors into two groups (hence the name A / B) and to present
to each group a diferent version of the functionality or the product. Then, we should
follow the path of the two groups, their appreciation of the functionality by means of
ad'hoc metrics, and we consider which of the two variants gives the best result with
respect to a given objective.

For instance, in order to tests if a trial frst approach is more appealing and leads
eventually to more sales than a mandatory buying:

The A/B test enables to validate very quickly the idea of introducing a trial period for
a feature or a product.

5.3.4.5 Scaling Agile

Transforming a startup into a company, changing and scaling its organization is a
unique, and yet challenging, opportunity to make it an agile organization keeping
the lean genes on which it has been built.
The agile aspect here is essential and the approach here actually has a name:
Scaling Agile.

Scrum and Kanban are two agile frameworks often used at the team level. Over the
past decade, as they gained popularity, the industry has begun to adapt and use
Agile in larger companies. Two methods (among others) emerged to facilitate this
process: LeSS (Large Scale Scrum) and SAFe (Scaled Agile Framework). Both are
excellent starting points for using Agile on a large scale within a company.

Both approaches difer a little but also have a lot in common: they consist of scaling
agility frst among multiple agile team within the R&D or Engineering department
and then around it, by having the whole company organizing its activities in an agile

153 The Agile Methods Collection / Jerome Kehrli

http://www.scaledagileframework.com/
http://less.works/

5. The Lean Startup - A focus on Practices

way and centered on the engineering team, the product development team.
I won't be describing these both approaches any further here and I let the reader
refer to both links above.

I just want to emphasize how important I believe that is. Scaling Agile is key in
aligning business and IT engagement models.

5.3.5 Company creation

Company creation is the end phase, when all assumptions have been confrmed or
adapted, when the product is build in an acceptable form, when the break-even
point it reached, and the startup should evolve to a corporation. When that moment
is reached, startups must begin the transition from the temporary organization
designed to search a business model to a structure focused on executing a validated
model.

Company creation happens at the moment the company can transition from its
informal, learning and discovery-oriented Customer Development team (startup,
temporary organization) into formal departments with VPs of Sales, Marketing and
Business Development.
At that moment, these executives should focus on building mission-oriented
departments that can exploit the company's early market success.

This is a change of bracket. We think of Company Creation since it is really a
question of creating a company, from what was sonlys a startup. The temporary
organization should evolve towards a sustainable and viable organization.

Describing anything further in regards to Company Creation exceeds the scope of
this article focused on Lean Startup Practices.
I can only recommend reading Steve Blank's article on the subject (or the big
chapter in the "Four Steps to the Epihpany"):

• A Startup is Not a Smaller Version of a Large Company

154 The Agile Methods Collection / Jerome Kehrli

https://steveblank.com/2010/01/14/a-startup-is-not-a-smaller-version-of-a-large-company/

5. The Lean Startup - A focus on Practices

• The Elves Leave Middle Earth - Sodas Are No Longer Free

• The Peter Pan Syndrome - The Startup to Company Transition

• What Do I Do Now? The Startup Lifecycle

5.4. Conclusions

The Lean Startup is not dogmatic. It is frst and foremost a question of being aware
that the market and the customer are not in the architecture meetings, marketing
plans, sales projections or key feature discussions.

Bearing this in mind, you will see assumptions everywhere. The key approach then
consists in putting in place a discipline of validation of the hypotheses while keeping
as key principle to validate the minimum of functionalities at any given time.

Before doing any line of code, the main questions to ask revolve around the triplet :
Client / Problem / Solution
Do you really have a problem that is worth resolving? Is your solution the right one
for your customer? Is he likely to buy it? For how much ? All the means are good to
remove these hypotheses: interviews, market studies, models, whatever you can
think of.

The next step is to know if the model that you came up with and have been able to
test on a smaller scale is really repeatable and extensible.
How to put a product they have never heard of in the hands of the customers ? Will
they understand it as well with its use and benefts ?

The Lean Startup is not an approach to be reserved only to mainstream websites or
fancy internet products. Innovating by validating hypotheses as quickly as possible
and limiting fnancial investment is obviously a logic that can be transposed to any
type of engineering project, even if it is internal.
I am convinced that the practices and principles from the Lean Startup approach
should be more widely used to avoid so many projects burning so much money and
efort before being simply dropped.

155 The Agile Methods Collection / Jerome Kehrli

https://steveblank.com/2015/02/12/what-do-i-do-now/
https://steveblank.com/2010/09/20/the-peter-pan-syndrome-%E2%80%93-the-startup-to-company-transition/
https://steveblank.com/2009/12/21/the-elves-leave-middle-earth-%E2%80%93-soda%E2%80%99s-are-no-longer-free/

6. Periodic Table of Agile Principles and Practices

6. Periodic Table of Agile Principles and
Practices

After writing my previous article, I wondered how I could represent on a single
schematic all the Agile Principles and Practices from the methods I am following, XP,
Scrum, Lean Startup, DevOps and others.
I found that the approach I used in in a former schematic - a graph of relationship
between practices - is not optimal. It already looks ugly with only a few practices and
using the same approach for the whole set of them would make it nothing but a
mess.

So I had to come up with something else, something better.
Recently I fell by chance on the Periodic Table of the Elements... Long time no see...
Remembering my physics lessons in University, I always loved that table. I
remembered spending hours understanding the layout and admiring the beauty of
its natural simplicity.
So I had the idea of trying the same layout, not the same approach since both are
not comparable, really only the same layout for Agile Principles and Practices.
The result is hereunder.

6.1 The Periodic Table of Agile Principles and Practices

156 The Agile Methods Collection / Jerome Kehrli

https://en.wikipedia.org/wiki/Periodic_table
https://www.niceideas.ch/roller2/badtrash/entry/agile-planning-tools-and-processes#sec5
https://www.niceideas.ch/roller2/badtrash/entry/agile-planning-tools-and-processes

6. Periodic Table of Agile Principles and Practices

The layout principle is and the description of the principles and practices is
explained hereafter.

6.2. Layout Principle

• The origin Method such as XP, Scrum, DevOps, etc is indicated by the color
as well as the name of the method on the top-right corner.

• The category, Principle or Practice is indicated by the shape: rectangle or
round corners.

• The number represents the complexity expressed as the number of
dependencies.

• The team or committee concerned with the principle or practice is indicated
as note on the bottom-right corner.

• The horizontal dimension is related to the complexity. The more on the right
is an element, the higher its complexity.

• The vertical dimension is related to classifying principles and practices more
organization or more related to engineering, in specifc layers related to the
category or team they apply to.

This is best presented as follows:

157 The Agile Methods Collection / Jerome Kehrli

6. Periodic Table of Agile Principles and Practices

6.3. Remarks

• Interestingly, but not surprisingly, scrum is really in the middle of the
schematic, underlying the fact that it impacts as well development principles
and the development team organization.

• XP is really everywhere down the line.

• Product Development is really about Product Management in the Agile world.

• DevOps is more related to development practices than everything else.

The next part of this article describes each and every principle and practice.

6.4. Principles and Practices

6.4.1 XP

Sn : Simple Design
A simple design always takes less time to fnish than a complex one. So
always do the simplest thing that could possibly work next. If you fnd
something that is complex replace it with something simple. It's always
faster and cheaper to replace complex code now, before you waste a lot
more time on it.

Depends on , , , , ,

Mt : Metaphor
System Metaphor is itself a metaphor for a simple design with certain
qualities. The most important quality is being able to explain the system
design to new people without resorting to dumping huge documents on
them. A design should have a structure that helps new people begin
contributing quickly. The second quality is a design that makes naming
classes and methods consistent.

Depends on , , ,

Td : TDD = Test Driven Development
Test-driven development is a software development process that relies
on the repetition of a very short development cycle: requirements are
turned into very specifc test cases, then the software is improved to
pass the new tests, only. This is opposed to software development that
allows software to be added that is not proven to meet requirements.

158 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Rf
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Su
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Mt
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Si
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sn
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Rf
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am

6. Periodic Table of Agile Principles and Practices

Depends on , , ,

Oc : Onsite Customer
One of the few requirements of extreme programming (XP) is to have
the customer available. Not only to help the development team, but to
be a part of it as well. All phases of an XP project require communication
with the customer, preferably face to face, on site. It's best to simply
assign one or more customers to the development team.

Rf : Refactoring
We computer programmers hold onto our software designs long after
they have become unwieldy. We continue to use and reuse code that is
no longer maintainable because it still works in some way and we are
afraid to modify it. But is it really cost efective to do so? Extreme
Programming (XP) takes the stance that it is not. When we remove
redundancy, eliminate unused functionality, and rejuvenate obsolete
designs we are refactoring. Refactoring throughout the entire project life
cycle saves time and increases quality.
Refactor mercilessly to keep the design simple as you go and to avoid
needless clutter and complexity. Keep your code clean and concise so it
is easier to understand, modify, and extend

Depends on , , , , ,

Cs : Coding Standards
Code must be formatted to agreed coding standards. Coding standards
keep the code consistent and easy for the entire team to read and
refactor. Code that looks the same encourages collective ownership.

Su : Sustainable Pace
To set your pace you need to take your iteration ends seriously. You
want the most completed, tested, integrated, production ready software
you can get each iteration. Incomplete or buggy software represents an
unknown amount of future efort, so you can't measure it. If it looks like
you will not be able to get everything fnished by iteration end have an
iteration planning meeting and re-scope the iteration to maximize your
project velocity. Even if there is only one day left in the iteration it is
better to get the entire team re-focused on a single completed task than
many incomplete ones.

Wt : Whole Team
All the contributors to an XP project sit together, members of a whole
team. The team shares the project goals and the responsibility for
achieving them. This team must include a business representative, the
sCustomers who provides the requirements, sets the priorities, and
steers the project

159 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Wt
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sn
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Mt
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am

6. Periodic Table of Agile Principles and Practices

Ci : Continuous Integration
Developers should be integrating and commiting code into the code
repository every few hours, when ever possible. In any case never hold
onto changes for more than a day. Continuous integration often avoids
diverging or fragmented development eforts, where developers are not
communicating with each other about what can be re-used, or what
could be shared. Everyone needs to work with the latest version.
Changes should not be made to obsolete code causing integration
headaches.

Depends on , , ,

Co : Collective Ownership
Collective Ownership encourages everyone to contribute new ideas to
all segments of the project. Any developer can change any line of code
to add functionality, fx bugs, improve designs or refactor. No one
person becomes a bottle neck for changes.

Cr : Code Review
Code review is increasingly favored over strict Pair Programming as
initially requires by the XP Method. The problem with Pair programming
is that it cannot ftr everybody.
Code reviews are considered important by many large-process gurus.
They are intended to ensure conformance to standards, and more
importantly, intended to ensure that the code is clear, efcient, works,
and has QWAN. They also intended to help disseminate knowledge
about the code to the rest of the team.

Depends on , , ,

Pg : Planning Game
The main planning process within extreme programming is called the
Planning Game. The game is a meeting that occurs once per iteration,
typically once a week. The planning process is divided into two parts:
Release Planning and Sprint Planning.

Depends on , , ,

Sr : Small Releases
The development team needs to release iterative versions of the system
to the customers often. Some teams deploy new software into
production every day. At the very least you will want to get new
software into production every week or two. At the end of every
iteration you will have tested, working, production ready software to
demonstrate to your customers. The decision to put it into production is
theirs.

160 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Co
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sn
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm

6. Periodic Table of Agile Principles and Practices

Sc : Source Code Management
A component of software confguration management, version control,
also known as revision control or source control, is the management of
changes to documents, computer programs, large web sites, and other
collections of information. Changes are usually identifed by a number or
letter code, termed the srevision numbers, srevision levels, or simply
srevisions. For example, an initial set of fles is srevision 1s. When the
frst change is made, the resulting set is srevision 2s, and so on. Each
revision is associated with a timestamp and the person making the
change. Revisions can be compared, restored, and with some types of
fles, merged.

Bs : Boyscout Rule
The Boy Scouts have a rule: sAlways leave the campground cleaner than
you found it.s If you fnd a mess on the ground, you clean it up
regardless of who might have made the mess. You intentionally improve
the environment for the next group of campers. Actually the original
form of that rule, written by Robert Stephenson Smyth Baden-Powell,
the father of scouting, was sTry and leave this world a little better than
you found it.s
What if we followed a similar rule in our code: sAlways check a module
in cleaner than when you checked it out.s No matter who the original
author was, what if we always made some efort, no matter how small,
to improve the module. What would be the result?

Depends on , ,

No : No premature optimization
In Donald Knuth's paper sStructured Programming With GoTo
Statementss, he wrote: sProgrammers waste enormous amounts of time
thinking about, or worrying about, the speed of noncritical parts of their
programs, and these attempts at efciency actually have a strong
negative impact when debugging and maintenance are considered. We
should forget about small efciencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%.s

At : Acceptance testing
Acceptance tests are created from user stories. During an iteration the
user stories selected during the iteration planning meeting will be
translated into acceptance tests. The customer specifes scenarios to
test when a user story has been correctly implemented. A story can
have one or many acceptance tests, what ever it takes to ensure the
functionality works.

Depends on ,

161 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Rf
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sn
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr

6. Periodic Table of Agile Principles and Practices

Ac : Automated Tests Coverage
Code Coverage is a measurement of how many lines/blocks/arcs of your
code are executed while the automated tests are running.
Code coverage on every dimension should be above possible to 80%
(the famous 80/20) rule and close to 100% (TDD).

Depends on , ,

6.4.2 Scrum

Sp : Sprint
A Sprint is a time-box of one month or less during which a sDones,
useable, and potentially releasable product Increment is created. Sprints
best have consistent durations throughout a development efort. A new
Sprint starts immediately after the conclusion of the previous Sprint.

Depends on , , ,

In : Product Increment (Shippable Product)
In Scrum, the Development Team delivers each Sprint a Product
Increment.
The increment must consist of thoroughly tested code that has been
built into an executable, and the user operation of the functionality is
documented either in Help fles or user documentation. These
requirements are documented in the Defnition of Done.
If everything works fne and the Development Team has estimated well,
the Product Increment includes all items, which were planned in the
Sprint Backlog, tested and documented.

Depends on , , , , , , ,

Sl : Sprint Planning
In Scrum, the sprint planning meeting is attended by the product owner,
ScrumMaster and the entire Scrum team. Outside stakeholders may
attend by invitation of the team, although this is rare in most
companies.
During the sprint planning meeting, the product owner describes the
highest priority features to the team. The team asks enough questions
that they can turn a high-level user story of the product backlog into the
more detailed tasks of the sprint backlog.

Depends on , , , ,

162 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sl
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sb
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pb
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cd
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ft
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pt
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ff
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pg
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Tv
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Us
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm

6. Periodic Table of Agile Principles and Practices

So : Sprint Retrospective
No matter how good a Scrum team is, there is always opportunity to
improve. Although a good Scrum team will be constantly looking for
improvement opportunities, the team should set aside a brief, dedicated
period at the end of each sprint to deliberately reflect on how they are
doing and to fnd ways to improve. This occurs during the sprint
retrospective.
The sprint retrospective is usually the last thing done in a sprint. Many
teams will do it immediately after the sprint review. The entire team,
including both the ScrumMaster and the product owner should
participate. You can schedule a scrum retrospective for up to an hour,
which is usually quite sufcient. However, occasionally a hot topic will
arise or a team conflict will escalate and the retrospective could take
signifcantly longer.

Depends on ,

Sb : Sprint Backlog
The sprint backlog is a list of tasks identifed by the Scrum team to be
completed during the Scrum sprint. During the sprint planning meeting,
the team selects some number of product backlog items, usually in the
form of user stories, and identifes the tasks necessary to complete each
user story. Most teams also estimate how many hours each task will
take someone on the team to complete.

Depends on ,

Pb : Product Backlog
The agile product backlog in Scrum is a prioritized features list,
containing short descriptions of all functionality desired in the product.
When applying Scrum, it's not necessary to start a project with a
lengthy, upfront efort to document all requirements. Typically, a Scrum
team and its product owner begin by writing down everything they can
think of for agile backlog priorization. This agile product backlog is
almost always more than enough for a frst sprint. The Scrum product
backlog is then allowed to grow and change as more is learned about
the product and its customers.

Depends on ,

Sd : Sprint Demo
In Scrum, each sprint is required to deliver a potentially shippable
product increment. This means that at the end of each sprint, the team
has produced a coded, tested and usable piece of software.
So at the end of each sprint, a sprint review meeting is held. During this
meeting, the Scrum team shows what they accomplished during the

163 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Kb
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Wh
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pb
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sg
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm

6. Periodic Table of Agile Principles and Practices

sprint. Typically this takes the form of a demo of the new features.

Depends on

Po : Product Owner
The Scrum product owner is typically a project's key stakeholder. Part of
the product owner responsibilities is to have a vision of what he or she
wishes to build, and convey that vision to the scrum team. This is key to
successfully starting any agile software development project. The agile
product owner does this in part through the product backlog, which is a
prioritized features list for the product.
The product owner is commonly a lead user of the system or someone
from marketing, product management or anyone with a solid
understanding of users, the market place, the competition and of future
trends for the domain or type of system being developed.

Depends on

Ds : Daily Scrum
In Scrum, on each day of a sprint, the team holds a daily scrum meeting
called the sdaily scrum.s Meetings are typically held in the same
location and at the same time each day. Ideally, a daily scrum meeting
is held in the morning, as it helps set the context for the coming day's
work. These scrum meetings are strictly time-boxed to 15 minutes. This
keeps the discussion brisk but relevant.

Sm : Scrum Master
What is a Scrum Master? The ScrumMaster is responsible for making
sure a Scrum team lives by the values and practices of Scrum. The
ScrumMaster is often considered a coach for the team, helping the team
do the best work it possibly can. The ScrumMaster can also be thought
of as a process owner for the team, creating a balance with the project's
key stakeholder, who is referred to as the product owner.
The ScrumMaster does anything possible to help the team perform at
their highest level. This involves removing any impediments to progress,
facilitating meetings, and doing things like working with the product
owner to make sure the product backlog is in good shape and ready for
the next sprint. The ScrumMaster role is commonly flled by a former
project manager or a technical team leader but can be anyone.

Do: Defnition of Done
Defnition of Done is a simple list of activities (writing code, coding
comments, unit testing, integration testing, release notes, design
documents, etc.) that add verifable/demonstrable value to the product.
Focusing on value-added steps allows the team to focus on what must
be completed in order to build software while eliminating wasteful
activities that only complicate software development eforts.

164 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc

6. Periodic Table of Agile Principles and Practices

Depends on , ,

Pp : Planning Poker
Planning Poker is an agile estimating and planning technique that is
consensus based. To start a poker planning session, the product owner
or customer reads an agile user story or describes a feature to the
estimators.
Each estimator is holding a deck of Planning Poker cards with values like
0, 1, 2, 3, 5, 8, 13, 20, 40 and 100, which is the sequence we
recommend. The values represent the number of story points, ideal
days, or other units in which the team estimates.
The estimators discuss the feature, asking questions of the product
owner as needed. When the feature has been fully discussed, each
estimator privately selects one card to represent his or her estimate. All
cards are then revealed at the same time.
If all estimators selected the same value, that becomes the estimate. If
not, the estimators discuss their estimates. The high and low estimators
should especially share their reasons. After further discussion, each
estimator reselects an estimate card, and all cards are again revealed at
the same time.
The poker planning process is repeated until consensus is achieved or
until the estimators decide that agile estimating and planning of a
particular item needs to be deferred until additional information can be
acquired.

Depends on

Es : Estimations in Story Points
Story points are a unit of measure for expressing an estimate of the
overall efort that will be required to fully implement a product backlog
item or any other piece of work.
When we estimate with story points, we assign a point value to each
item. The raw values we assign are unimportant. What matters are the
relative values. A story that is assigned a 2 should be twice as much as
a story that is assigned a 1. It should also be two-thirds of a story that is
estimated as 3 story points.
Instead of assigning 1, 2 and 3, that team could instead have assigned
100, 200 and 300. Or 1 million, 2 million and 3 million. It is the ratios
that matter, not the actual numbers.

Tv : Team Velocity
Velocity is simply a metric based on the completed items in a sprint by a
single team. The metric is completely subjective to that specifc team,
and should never be extrapolated for any other comparison.
Velocity is a reflective metric gathered from the sprint throughput of a
stable team. Usually, a velocity metric is not considered valid until
several sprints have been completed.

165 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Es

6. Periodic Table of Agile Principles and Practices

Depends on , , ,

6.4.3 Product Development

Us : User Stories
In software development and product management, a user story is an
informal, natural language description of one or more features of a
software system. User stories are often written from the perspective of
an end user or user of a system. They are often recorded on index
cards, on Post-it notes, or in project management software. Depending
on the project, user stories may be written by various stakeholders
including clients, users, managers or development team members.

Depends on ,

Sg : Story Mapping
Story mapping consists of ordering user stories along two independent
dimensions. The smaps arranges user activities along the horizontal axis
in rough order of priority (or sthe order in which you would describe
activities to explain the behaviour of the systems). Down the vertical
axis, it represents increasing sophistication of the implementation.
Given a story map so arranged, the frst horizontal row represents a
swalking skeletons, a barebones but usable version of the product.
Working through successive rows fleshes out the product with additional
functionality.

Depends on , , , ,

Cc : 3 C's - Card, conversation, confrmation
sCard, Conversation, Confrmations; this formula (from Ron Jefries)
captures the components of a User Story:
a "Card" (or often a Post-It note), a physical token giving tangible and
durable form to what would otherwise only be an abstraction;
a "conversation" taking place at diferent time and places during a
project between the various people concerned by a given feature of a
software product: customers, users, developers, testers; this
conversation is largely verbal but most often supplemented by
documentation;
the "confrmation", fnally, the more formal the better, that the
objectives the conversation revolved around have been reached.

Depends on

166 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Es
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Su
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Us
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pv
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Us

6. Periodic Table of Agile Principles and Practices

Pv : Product Vision (elevator Pitch)
Every Scrum project needs a product vision that acts as the project's
true north, sets the direction and guides the Scrum team. It is the
overarching goal everyone must share – Product Owner, ScrumMaster,
team, management, customers and other stakeholders. As Ken
Schwaber puts it: sThe minimum plan necessary to start a Scrum project
consists of a vision and a Product Backlog. The vision describes why the
project is being undertaken and what the desired end state is.s

Depends on

Iv : INVEST
The INVEST mnemonic for agile software projects was created by Bill
Wake as a reminder of the characteristics of a good quality User Story:
Independent: The User Story should be self-contained, in a way that
there is no inherent dependency on another PBI;
Negotiable: User Stories are no contracts and must leave space for
discussion;
Valuable: A User Story must deliver value to the stakeholders;
Estimatable: You must always be able to estimate the size of a User
Story;
Small: User Stories should not be so big as to become impossible to
plan/task/prioritize with a certain level of accuracy;
TestableThe User Story or its related description must provide the
necessary information to make test development possible.

Depends on , ,

6.4.4 DevOps

Ff : Feature Flipping
Feature flipping is a technique in software development that attempts to
provide an alternative to maintaining multiple source-code branches
(known as feature branches), such that the feature can be tested, even
before it is completed and ready for release. Feature flipping is used to
hide, enable or disable the features, during run time. For example,
during the development process, the developer can enable the feature
for testing and disable it for remaining users

Depends on ,

Cd : Continuous Delivery
Continuous delivery (CD) is a software engineering approach in which
teams produce software in short cycles, ensuring that the software can
be reliably released at any time. It aims at building, testing, and
releasing software faster and more frequently. The approach helps
reduce the cost, time, and risk of delivering changes by allowing for
more incremental updates to applications in production. A

167 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Us
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am

6. Periodic Table of Agile Principles and Practices

straightforward and repeatable deployment process is important for
continuous delivery.

Depends on , , , , , , , , ,

Ap : Automated Provisioning
(Infrastructure as Code) Server provisioning is a set of actions to
prepare a server with appropriate systems, data and software, and
make it ready for network operation. Typical tasks when provisioning a
server are: select a server from a pool of available servers, load the
appropriate software (operating system, device drivers, middleware,
and applications), appropriately customize and confgure the system
and the software to create or change a boot image for this server, and
then change its parameters, such as IP address, IP Gateway to fnd
associated network and storage resources (sometimes separated as
resource provisioning) to audit the system
With DevOps and Automated Provisioning, this whole confguration
pipeline should be completely automated and executable in one-click,
either automatically or on-demand.

Depends on , ,

Ic : Infrastructure Continuous Integration
(Infrastructure as Code) Infrastructure Continuous Integration consists in
leveraging Continuous Integration techniques to Infrastructure
components.
The continuous integration system is necessarily complex, spanning the
development, test and staging environments. The continuous
integration build should continuously build and test the provisioning,
confguring and maintaining of the various infrastructure components.

Depends on , ,

Zd : Zero Downtime Deployments
A Zero Downtime Deployment consists in redeploying (typically for a
software upgrade) a production system without any downtime
appearing to end users. To achieve such lofty goals, redundancy
becomes a critical requirement at every level of your infrastructure.
There are various techniques involved such a canari release or blue-
green deployments.

Depends on ,

168 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ap
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#In
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ic
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Zd
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Vc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Bp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ar
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ic
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Vc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ap
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am

6. Periodic Table of Agile Principles and Practices

Cm : Confguration Management
Confguration management is a class of tool supporting the automation
of the confguration of a system, platform or software. It typically
consists in defne-with-code the various confg elements that prepare a
provisioned compute resource (like a server or AWS Ec2 instance) for
service (installing software, setting up users, confguring services,
placing fles with template-defned variables, defning external confg
resources like DNS records in a relevant zone).

Depends on

Vc : Virtualization and Containers
Hardware virtualization or platform virtualization refers to the creation
of a virtual machine that acts like a real computer with an operating
system. Software executed on these virtual machines is separated from
the underlying hardware resources.
Containerization - also called container-based virtualization and
application containerization - is an OS-level virtualization method for
deploying and running distributed applications without launching an
entire VM for each application. Instead, multiple isolated systems, called
containers, are run on a single control host and access a single kernel.

Bp : Build Pipelines
Build pipelines are integrated views of downstream and upstream build
jobs on a build server. Build pipelines are requires to automated all the
various tasks towards continuous delivery such as : provisionning of the
environment, build of the various software (with compilation, tests,
packaging, etc.), deployment of the software components, applying
confguration and testing the deployed platform.

Depends on ,

Ar : Automated Releases
Release Automation consists in automating all the various steps
required to release a new version of a software: building, testing,
tagging, branching et deploying the binaries to a Binary management
tools.

Depends on ,

St : Share the tools
Share the tools is a DevOps principles aimed at leveraging both Dev and
Ops tools and practices to the other side of the wall. Developers should
leverage their automation and building tool to Infrastructure
Automation, Provisioning and Testing. Ops should share the production
monitoring concerns with developers.

169 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ic
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Bp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Bm

6. Periodic Table of Agile Principles and Practices

Depends on

Os : Operators are stakeholders
Operators as stakeholders is a DevOps principle stating that Operators
should be considered the other users of the platform. They should be
fully integrated in the Software Development Process.
At specifcation time, operators should give their non-functional
requirements just as business users give their functional requirement.
Such non-functional requirements should be handled with same
important and priority by the development team.
At implementation time, operators should provide feedback and non-
functional tests specifcations continuously just as business users
provides feedback on functional features.

Depends on

Or : Operators in Rituals
Operators in Rituals is a DevOps principle stating that operators should
be integrated in the Development Team Rituals such as the Sprint
Planning and Sprint Retrospective and represent non-functional
constraints during these rituals just as the Product Owner represents the
functional interests.

Depends on , , ,

Bm : Binaries Management
A binary repository manager is a software tool designed to optimize the
download and storage of binary fles used and produced in software
development. It centralizes the management of all the binary artifacts
generated and used by the organization to overcome the complexity
arising from the diversity of binary artifact types, their position in the
overall workflow and the dependencies between them.
A binary repository is a software repository for packages, artifacts and
their corresponding metadata. It can be used to store binary fles
produced by an organization itself, such as product releases and nightly
product builds, or for third party binaries which must be treated
diferently for both technical and legal reasons.

6.4.5 Lean Startup

Fl : Feedback Loop
The Build-Measure-Learn feedback loop is one of the central principles
of Lean Startup Method.
A startup is to fnd a successful revenue model that can be developed
with further investment. Build-Measure-Learn is a framework for
establishing – and continuously improving – the efectiveness of new
products, services and ideas quickly and cost-efectively.
In practice, the model involves a cycle of creating and testing

170 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sl
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ds
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cd

6. Periodic Table of Agile Principles and Practices

hypotheses by building something small for potential customers to try,
measuring their reactions, and learning from the results.

Depends on , , ,

Ft : feature Teams
A feature team is a long-lived, cross-functional, cross-component team
that completes many end-to-end customer features—one by one. It is
opposed to the traditional approach of Component Team where a team
is specialized on an individual software components and maintains it
over several projects at the same time.
The Feature team approach seeks to avoid the bottlenecks usually
appearing with Component Teams.

Fa : Fail Fast
Fail fast means getting out of planning mode and into testing mode,
eventually for every critical component of your model of change.
Customer development is the process that embodies this principle and
helps you determine which hypotheses to start with and which are the
most critical for your new idea.
An important goal of the philosophy is to cut losses when testing reveals
something isn't working and quickly try something else, a concept
known as pivoting.

Depends on

Mv : MVP
In product development, the minimum viable product (MVP) is a product
with just enough features to satisfy early customers, and to provide
feedback for future development

Depends on ,

Gb : Get Out of the building
If you are pre-Product/Market Fit and you aren't actually sGetting out of
the Buildings (actually talking to your customers), you aren't doing
Customer Development, and your startup isn't a Lean Startup.
Again: If you aren't actually talking to your customers, you aren't doing
Customer Development.

Pt : Pizza Teams
The idea of a stwo pizza teams was coined by Jef Bezos, founder of
Amazon.com. If you can't feed a team with two pizzas, it's too large.
That limits a task force to fve to seven people, depending on their
appetites.s
The underlying idea is that as a team's size grows, the amount of one-
on-one communication channels tend to explode.
Beyond ten, communication loses efciency, cohesion diminishes,
parasitism behaviors and power struggles appear, and the performance

171 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sd
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cd
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am

6. Periodic Table of Agile Principles and Practices

of the team decreases very rapidly with the number of members.

As : Actionable Metrics
The only metrics that entrepreneurs should invest energy in collecting
are those that help them make decisions. Actionable Metrics are
opposed to Vanity Metrics.
This is a precision of another fundamental Lean Startup practice wich is
sObsession of Measures stating that everything should be measured and
no decision should be taken in the company if it is not supported by a
Key Process Indicator or a Key Risk Indicator.

Depends on ,

Bb : Build vs. Buy
This is a fundamental principle of the Lean Startup and the web giants :
favor as much as possible building your own software, your own feature
instead of buying a third party software or library.
When initiating a startup, having to pay fees to third party corporations
before reaching a sustainable growth is suicidal.

Depends on ,

Ab : A/B Testing
In marketing and business intelligence, A/B testing is a term for a
controlled experiment with two variants, A and B. It can be considered
as a form of statistical hypothesis testing with two variants leading to
the technical term, two-sample hypothesis testing, used in the feld of
statistics

Depends on ,

6.4.6 Kanban

Ko : Kanban Board
A Kanban board is a work and workflow visualization tool that enables
you to optimize the flow of your work. Physical Kanban boards typically
use sticky notes on a whiteboard to communicate status, progress, and
issues.
An agile corporation should use a KanBan board to monitor all its
processes.
A development team will typically use a Kanban board to monitor the
Sprint backlog completion during a sprint.

6.4.7 Kaizen

172 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am

6. Periodic Table of Agile Principles and Practices

Kb : Kaizen Burst
The Kaizen burst is a specifc Kaizen process integrated the the
development rituals. In Agile Software Development, it is really
integrated in the Sprint Retrospective. This idea is to identify in a visual
way (with a post-it on a board for instance) the weaknesses or problems
in the development practices or processes. These boxes are called
Kaizen burst.
Theses boxes are commented as actions are taken towards
improvement and eventuelly removed when the weakness has been
adressed or the problem solved.

Depends on

Wh : 5 Why
5 Whys is an iterative interrogative technique used to explore the
cause-and-efect relationships underlying a particular problem.
The primary goal of the technique is to determine the root cause of a
defect or problem by repeating the question sWhy?s Each answer forms
the basis of the next question. The s5s in the name derives from an
anecdotal observation on the number of iterations needed to resolve the
problem.

Depends on

6.4.8 FDD (Feature Driven Development)

Si : SOLID principles
In computer programming, the term SOLID is a mnemonic acronym for
fve design principles intended to make software designs more
understandable, flexible and maintainable. The principles are a subset
of many princples promoted by Robert C. Martin.
Though they apply to any object-oriented design, the SOLID principles
can also form a core philosophy for methodologies such as agile
development or Adaptive Software Development.
The 5 principles are as follows:
SRP : Single responsibility principle - a class should have only a single
responsibility (i.e. only one potential change in the software's
specifcation should be able to afect the specifcation of the class)
OCP : Open/closed principle - ssoftware entities ... should be open for
extension, but closed for modifcation.s
LSP : Liskov substitution principle - sobjects in a program should be
replaceable with instances of their subtypes without altering the
correctness of that program.s
ISP : Interface segregation principle - smany client-specifc interfaces
are better than one general-purpose interface.s
DIP : Dependency inversion principle - one should sdepend upon
abstractions, not concretions.s

173 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So

6. Periodic Table of Agile Principles and Practices

Depends on

6.4.9 DAD

Pm : Product Management Committee
The Product Management Committee is both a team and a ritual that
enforces a smart approach to product management.
Product Management consists in identifying and evolving your
organization’s business vision; identifying and prioritizing potential
products/solutions to support that vision; identifying, prioritizing, and
allocating features to products under development; managing functional
dependencies between products; and marketing those products to their
potential customers.
The Product Management Committee is the weekly (or bi-weekly) ritual
enforcing and supporting this process with the required role attending
the committee. It is led by the product Owner which has more a role of
facilitator and arbitrator that a formal decision role. The Product Owner
represents the PMC to the development team.

Am : Architecture Committee
The Architecture Committee is responsible to analyze user stories and
defne Development Tasks. Every story should be specifed, designed
and discussed. Screen mockups if applicable should be drawn,
acceptance criteria agreed, etc.
Since the Architecture Committee is also responsible for estimating
Stories, it's important that representatives of the Development Team,
not only the Tech Leads and the Architects, but simple developers as
well, take part in it.

174 The Agile Methods Collection / Jerome Kehrli

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am

	1. Agile Landscape from Deloitte
	1.1 Agile Design
	1.2 Agile Development
	1.3 Agile Operation
	1.4 Agile Management
	1.5 Conclusion

	2. Agile Software Development, lessons learned
	2.1 Agile Software Development
	2.1.1 Why Agile anyway ?
	2.1.2 Agile Development Value Proposition
	2.1.3 Scrum
	2.1.4 Kanban
	2.1.5 Prerequisites : XP !
	2.1.6 Benefits : DevOps, Lean Startup

	2.2 Scrum roles
	2.3 From Story Maps to Product Backlog
	2.3.1 User Stories
	2.3.2 Story Maps
	2.3.3 From User stories to Developer Tasks

	2.4. From User Stories to Releases
	2.4.1 Composing our releases
	2.4.2 Composing the sprint
	2.4.3 Estimations in Story Points

	2.5. Introducing our sprints
	2.5.1 Before Sprint
	2.5.2 During Sprint
	2.5.3 After Sprint

	2.6 Release Backlog and Sprint Backlog
	2.6.1 Different release backlogs, long term backlog, sprint backlog ...
	2.6.2 While being Agile
	2.6.3 Handling customer requests and production concerns
	2.6.4 Sprint Kanban backlog management

	2.7 Conclusion

	3. Agile Planning : tools and processes
	3.1 Introduction
	3.2 The Fundamentals
	3.2.1 eXtreme Programming
	3.2.2 Scrum
	3.2.3 DevOps
	3.2.4 Lean Startup
	3.2.5 Visual Management and Kanban
	3.2.5.1 Story Map
	3.2.5.2 Product Backlog
	3.2.5.3 Kanban Board
	3.2.5.4 User Stories

	3.3. Principles
	3.3.1 The tools
	3.3.2 The Organization
	3.3.2.1 Required roles
	3.3.2.2 Required Committees and teams

	3.3.3 The Processes
	3.3.3.1 Design Process
	3.3.3.2 Estimation Process
	3.3.3.3 Product Kanban Board Maintenance Process
	3.3.3.4 Story Map and Backlog synchronization Process
	3.3.3.5 Forecasting
	3.3.3.6 Development process: Scrum

	3.3.4 The Rituals
	3.3.4.1 Product Management Committee
	3.3.4.2 Architecture Committee
	3.3.4.3 Sprint Management Committee
	3.3.4.4 Development Team - Daily Scrum

	3.3.5 The Values

	3.4 Overview of the whole process
	3.5 Return on Practices
	3.6. Conclusion

	4. DevOps explained
	4.1 Introduction
	4.1.1 The management credo
	4.1.2 a typical IT organization
	4.1.3 Ops frustration
	4.1.4 Infrastructure automation
	4.1.5 DevOps : For once, a magic silver bullet

	4.2 Infrastructure as Code
	4.2.1 Overview
	4.2.2 DevOps Toolchains
	4.2.3 Benefits

	4.3 Continuous Delivery
	4.3.1 Learn from the field
	4.3.2 Automation
	4.3.3 Deploy more often
	4.3.4 Continuous Delivery requirements
	4.3.5 Zero Downtime Deployments

	4.4 Collaboration
	4.4.1 The wall of confusion
	4.4.2 Software Development Process
	4.4.3 Share the Tools
	4.4.4 Work Together

	4.5 Conclusion

	5. The Lean Startup - A focus on Practices
	5.1. The Lean Startup
	5.1.1 Origins
	5.1.2 The movement
	5.1.3 Principles
	5.1.4 The Feedback Loop
	5.1.5 Business Model Canvas and Lean Canvas
	5.1.6 Customer Development

	5.2 The four steps to the Epiphany
	5.2.1 Overview
	5.2.2 A 4 steps process

	5.3 Lean startup practices
	5.3.1 Customer Discovery
	5.3.1.1 Get out of the building
	5.3.1.2 Problem interview
	5.3.1.3 Solution interview

	5.3.2 Customer Validation
	5.3.2.1 MVP
	5.3.2.2 Fail Fast

	5.3.3 Re-adapt the product
	5.3.3.1 Metrics Obsession
	5.3.3.2 Pivot

	5.3.4 Get new customers
	5.3.4.1 Pizza Teams
	5.3.4.2 Feature Teams
	5.3.4.3 Build vs. Buy
	5.3.4.4 A/B Testing
	5.3.4.5 Scaling Agile

	5.3.5 Company creation

	5.4. Conclusions

	6. Periodic Table of Agile Principles and Practices
	6.1 The Periodic Table of Agile Principles and Practices
	6.2. Layout Principle
	6.3. Remarks
	6.4. Principles and Practices
	6.4.1 XP
	6.4.2 Scrum
	6.4.3 Product Development
	6.4.4 DevOps
	6.4.5 Lean Startup
	6.4.6 Kanban
	6.4.7 Kaizen
	6.4.8 FDD (Feature Driven Development)
	6.4.9 DAD

