
HES-SO - University of Applied Sciences of western Switzerland - MSE

Optimization

Resume of the MSE lecture

by

Jérôme KEHRLI

prepared at HES-SO - Master - Provence,
written in Mai-Jul, 2011

largeley inspired from the work by TODO TODO

Resume of the Software Engineering lecture

Abstract:

TODO

Keywords: Optimization

Contents

I Differential Optimisation 1

1 Introduction 3

1.1 Purpose . 3

1.2 Introductory example . 3

1.2.1 Notation . 4

1.2.2 Formalizing the problem . 4

1.3 Modeling . 6

1.3.1 Introductory example : Indiana Jones . 6

1.4 Transformation . 8

1.5 The score function . 8

1.5.1 Definition . 8

1.5.2 Note . 9

1.5.3 Local differential optimisation . 10

1.5.4 Hypothesis . 11

1.6 Practice . 11

1.6.1 Exercise 1: Transformation . 11

2 Mathematical introduction 13

2.1 Recall of mathematical analysis . 13

2.1.1 1D derivative . 13

2.1.2 2D derivative . 14

2.1.3 Secondary partial derivative . 15

2.1.4 Partial differential equations . 15

2.2 The Gradient vector . 15

2.2.1 Directional derivatives . 16

2.2.2 Properties of the gradient vector . 17

2.2.3 Demonstration: the formula of the normal vector 19

2.3 The Hessian matrix . 20

2.3.1 The curvature . 21

ii Contents

2.4 Practice . 21

2.4.1 Exercise 2: recall on derivatives . 21

2.4.2 Exercise 3: The normal vector . 22

2.4.3 Exercise 4 : Gradient . 22

2.4.4 Exercise 5 : Steepest descend, curvature 23

2.4.5 Exercise 6 : Hessian . 25

2.4.6 Exercise 7 : Normal and gradient vectors 26

2.4.7 Exercise 10 : Plan curvature . 26

3 Introduction to matrix calculations 29

3.1 Introduction . 29

3.1.1 General form . 30

3.1.2 Transpose . 30

3.2 2 x 2 matrices . 30

3.2.1 Properties . 30

3.2.2 Inverting a 2 x 2 matrix . 31

3.2.3 Diagonal matrix . 31

3.3 Quick geometry reminder . 31

3.4 Spectral matrix analysis . 31

3.4.1 Find eigenvalues . 32

3.4.2 Find eigenvectors . 33

3.4.3 Diagonalization . 33

3.4.4 Example . 34

3.5 Geometrical interpretation of the eigenvalues . 36

3.5.1 The Rayleigh-Ritz theorem . 36

3.6 Condition number . 36

3.6.1 Geometrical interpretation of the condition number 37

3.7 Practice . 37

3.7.1 Exercise 8 : eigenvalues . 37

3.7.2 Exercise 9 : Eigenvalues of a diagonal matrix 39

Contents iii

4 Preconditionning 41

4.1 Preconditionning . 41

4.1.1 Definition: preconditionning . 42

4.1.2 Principle . 42

4.1.3 The Cholesky theorem . 42

4.2 Example in 2D . 43

4.2.1 Compute Hessian . 43

4.2.2 Cholesky Decomposition . 43

4.2.3 Variable Change . 44

4.2.4 Compute function f̃ . 44

4.2.5 Condition Number . 44

4.2.6 Contour lines . 44

4.3 Practice . 45

4.3.1 Exercise 11: preconditionning and variable change 45

4.3.2 Reverting variable change . 45

4.3.3 Inverting the matrix . 45

4.3.4 Computing x∗ . 46

4.3.5 Exercise 12: preconditionning and variable change 46

5 Stopping criterion / Optimality condition 49

5.1 Introduction . 49

5.1.1 1-dimension . 49

5.1.2 2-dimensions or more . 50

5.2 Optimality condition . 50

5.2.1 Theorem: necessary condition . 50

5.2.2 Theorem: sufficient condition . 51

6 Differential Optimisation 53

6.1 Introduction . 53

6.2 Principle . 54

6.2.1 Descent method . 55

6.2.2 Local algorithms . 55

6.3 Steepest slope method . 55

iv Contents

6.3.1 Iteration . 56

6.3.2 The step α . 56

6.3.3 Recall on parabolas . 56

6.3.4 Example . 57

6.4 Limitations of the steepest slope method . 58

6.5 Estimating the ideal step α . 58

6.5.1 The parabola algorithm . 59

6.6 Stop condition = optimality condition . 60

6.7 Algorithm for the steepest descent . 60

6.7.1 Performance Optimizations . 61

6.8 Practice . 61

6.8.1 Exercise 13 : steepest slope descent . 61

6.8.2 Exercise 14 : interpolating the step length 63

6.8.3 Compute first iteration . 65

6.8.4 What if we keep going on ? . 65

7 Solving nonlinear systems - Newton 67

7.1 Introduction . 67

7.1.1 Principle . 68

7.2 Newton in 1D . 68

7.2.1 Graphical approach - 1D Newton . 68

7.2.2 Analytical approach - 1D Newton . 69

7.2.3 Divergence - an example . 71

7.3 Newton in nD . 71

7.3.1 Purpose . 71

7.3.2 Geometrical approach - nD Newton . 72

7.3.3 Analytical approach - nD Newton . 73

7.3.4 Newton’s equation . 73

7.4 The Newton algorithm . 73

7.5 Practice . 74

7.5.1 Exercise 15-a : from a system to the zero 74

7.5.2 Exercise 17 : the Newton algorithm . 75

Contents v

8 Solving nonlinear systems - Quasi-Newton methods 77

8.1 Introduction . 77

8.1.1 Principle . 78

8.2 The string method . 78

8.3 Finite difference method . 78

8.3.1 Idea : the secant principle . 79

8.4 The Broyden method . 79

8.4.1 The linear estimated model . 79

8.4.2 The Quasi-Newton equation . 80

8.4.3 Multi-dimensional secant . 80

8.4.4 Algorithm principle . 80

8.4.5 Broyden . 81

8.5 Algorithm . 81

8.6 Practice . 82

8.6.1 Exercise 15-b : from a system to the zero 82

8.6.2 Exercice 16 : Zero Newton unidimensional 82

9 Optimisation with The Newton method 87

9.1 Introduction . 87

9.1.1 Principle . 87

9.2 The Newton method . 88

9.2.1 Relation between jacobian of the gradient and the hessian 88

9.2.2 Algorithm for the Newton method . 89

9.3 The Quasi-Newton-Secant-Broyden method . 90

9.3.1 Algorithm for the Quasi-Newton-Secant-Broyden method 90

9.4 Practice . 91

9.4.1 Exercise 19 : Quasi-Newton-Secant-Broyden 91

II Linear Programming 93

10 Linear programming 95

10.1 Introduction . 95

vi Contents

10.1.1 The problem of a manufacturing company 96

10.1.2 Modeling . 96

10.2 Definitions . 97

10.2.1 Linear Programming . 97

10.2.2 Feasible solutions . 97

10.2.3 The score function . 97

10.3 Math reminder . 97

10.3.1 The Gauss method . 97

10.3.2 Algebra reminder . 99

10.3.3 Draw a line on a graph . 99

10.4 Practice . 99

10.4.1 Exercise 1 : Gauss . 99

10.4.2 Exercise 2 : Modeling . 101

11 Geometric Approach 103

11.1 Introduction . 103

11.1.1 Definition - Convexe . 103

11.1.2 Definition - polyhedron . 103

11.2 Approach . 104

11.2.1 Naive algorithm . 104

11.2.2 geometrical approach . 104

11.3 Illustration example . 105

11.3.1 Stage 1 : draw the polygon . 105

11.3.2 Stage 2 : draw the countour curves . 105

11.3.3 Stage 3 : find the highest curve . 106

11.4 Graphical sensitivity analysis . 106

11.5 Practice . 107

11.5.1 Exercise 3 : geometrical approach . 107

Contents vii

12 Algebraic Approach - The Simplex algorithm 109

12.1 Introduction . 109

12.2 Illustration example . 110

12.2.1 The technique of parameterization . 110

12.2.2 The Simplex algorithm . 112

12.3 The Simplex algorithm . 115

12.3.1 Resumed form . 116

12.4 Notes . 116

12.5 Practice . 116

12.5.1 Exercise 5 : Algebraic Simplex . 116

12.5.2 Exercise 6 : Algebraic Simplex . 120

13 Tabular Approach - The Simplex algorithm 125

13.1 Purpose . 125

13.2 Illustration example . 126

13.2.1 base feasible solution . 126

13.2.2 Iteration 1 . 127

13.2.3 Pivot Point . 128

13.2.4 Iteration 2 . 129

13.2.5 Stop and results . 130

13.3 Why does the tabular contrain the opposite of the score ? 131

13.3.1 Representaiton of the initial LP . 131

13.3.2 Integrating the score into the constraint system 131

13.4 Convergence . 132

13.5 Practice . 133

13.5.1 Exercise 7 : Simplex Tabular approach . 133

13.5.2 Exercise 8 : Simplex Tabular approach . 135

14 Simplex - Additional concerns 137

14.1 Lack of a feasible initial solution . 137

14.1.1 Motivation . 137

14.1.2 The artificial variables algorithm . 137

14.2 (LP) transformations . 138

viii Contents

14.2.1 Limitations . 138

14.2.2 parades . 139

14.2.3 Canonical form - definition . 141

14.3 Simplex using R . 141

14.4 Practice . 142

14.4.1 Exercise 4 : transformation . 142

III Integer linear Programming 143

15 Integer Linear programming 145

15.1 Introduction . 145

15.1.1 Example . 145

15.2 Differences with (LP) . 146

15.2.1 Different results . 146

15.2.2 Even more different . 147

16 The Branch and Bound algorithm 149

16.1 Introduction . 149

16.2 Principle . 150

16.2.1 Steps . 150

16.3 Illustration example . 150

16.3.1 Root (ILP) . 151

16.3.2 (ILP) 1 - Root→ Left . 152

16.3.3 (ILP) 3 - Root→ Left→ Left . 152

16.3.4 (ILP) 4 - Root→ Left→ Right . 153

16.3.5 (ILP) 2 - Root→ Right . 153

16.3.6 (ILP) 6 - Root→ Right→ Right . 154

16.3.7 (ILP) 5 - Root→ Right→ Right . 154

16.3.8 (ILP) 7 - Root→ Right→ Left→ Left . 155

16.3.9 (ILP) 8 - Root→ Right→ Left→ Right . 155

16.4 The Branch-and-Bound method . 157

16.4.1 General Form . 157

Contents ix

16.4.2 Assumptions . 157

16.5 Algorithm of Branch-and-Bound . 157

16.6 Practice . 159

16.6.1 Exercise 1 : Branch & Bound - Simplex . 159

16.6.2 Exercise 2 : The Knapsack problem . 162

16.6.3 Exercise 3 : an (ILP) as a binary problem (Knaspack 163

17 The Cutting Plane method 165

17.1 Introduction . 165

17.1.1 Example on the Knapsack problem . 166

17.2 Gomory’s cut . 166

17.2.1 The principle . 166

17.2.2 At start, the Simplex . 167

17.2.3 Chosing a source constraint . 167

17.2.4 Extracting the constraint . 168

17.2.5 Introduce a new slack variable . 168

17.2.6 A new problem . 168

17.3 Example continued . 169

17.3.1 Solving the dual with the Simplex . 170

17.3.2 Back under primal form . 171

17.4 Notes . 171

18 The Dual problem 173

18.1 Motivation . 173

18.2 Properties . 173

18.3 Transformation . 174

18.3.1 Formal form . 174

18.3.2 Matrix form . 174

18.3.3 Example . 175

18.4 Notes . 176

18.4.1 Which is better ? . 176

18.4.2 Primal-Dual correspondance . 176

18.5 Example . 176

Part I

Differential Optimisation

CHAPTER 1

Introduction

Contents
1.1 Purpose . 3

1.2 Introductory example . 3

1.2.1 Notation . 4

1.2.2 Formalizing the problem . 4

1.3 Modeling . 6

1.3.1 Introductory example : Indiana Jones . 6

1.4 Transformation . 8

1.5 The score function . 8

1.5.1 Definition . 8

1.5.2 Note . 9

1.5.3 Local differential optimisation . 10

1.5.4 Hypothesis . 11

1.6 Practice . 11

1.6.1 Exercise 1: Transformation . 11

1.1 Purpose

1.2 Introductory example

In digital medical imaging, one of the current challenges computer sciences and mathematics
are trying to solve is the building of a m ap of the neuronal activity within the brain. This implies
devices laying 256 sensors on the head which measres the electromagnetic field generated by
the 60’000 neurons.
We end up with a system of 256 equations with 60’000 unknown variables. The system is largely
underdetermined.

One can pose:

m = 60′000 neurons

n = 256 sensors

4 Chapter 1. Introduction

y n sensors vector
=

Am×n matrix

×
x m neurons vector

1.2.1 Notation

• Vectors such as x or y above should generally be layed in column. However, in order
to simplify the notation, we will write them down in row (thus considering the transposed
vector x1T .

• An n dimension vector is normally noted x =


x1
x2
. . .

xn

, we will use the shorter form x = (xi)

considering x ∈ Rn.

• Matrix A ∈Mm×n(R) = an n lines and m columns matrix with its coefficients in R.

1.2.2 Formalizing the problem

y is known, A is known (given by medical experts)⇒ we need to find x.

But we cannot simply compute x = A−1 × y as A is not reversible (only squared matrices
are reversible).

Besides, we have an additional dimension which is the time as we get a complete new set of
measures every millisecond.
We are actually facing L = number of measures systems.

1.2.2.1 Solution

We are looking for an x such that ~z = yt −A× xt is as little as possible.
⇒ minimize the length of the vector z.

⇒ minimize ||z||2 =

√√√√ n∑
i=1

zi2

Note: ||z||2 is the euclidean norm.

1.2. Introductory example 5

We want to minimize min(||yt −A× xt||2) but we
don’t care in this actualy minimal value.
What we want is argmin:

argmin = values of the xi = coordi-
nates where the minimum is realized,
where it occurs.

⇒We are looking for arg min(||yt −A× xt||2)

Notes: the matrix A gives us the way the signal is distorded and screwed by the tissues, the
bones. etc. The great strength of the optimization techniques is that they enable us to ignore
the noise.

1.2.2.2 Constraints

Yet we still have way too many solutions to our system⇒ we need to introduce constraints.

Contraint 1 : An active neuron should have each of its neighbours active either (perhaps less
active, yet still active).

min(

T∑
t=1

m∑
i=1

||xit − xδit ||2)

where the neuron xδit is a neigbour of the neuron xit

Contraint 2 : It takes time to activate a neuron or deactivate it. Thus, the state changes for
each neuron should be minimized as well.

min(
T∑
t=1

m∑
i=1

||xit − xit−1||2)

In addition, we should try to give each constraint a ponderation.

1.2.2.3 formula

The complete formula is:

arg min(||yt −A× xt||2 + λS
T∑
t=1

m∑
i=1

||xit − xδit ||2 + λT
T∑
t=1

m∑
i=1

||xit − xit−1||2)

where:

λS is the spatial ponderation

6 Chapter 1. Introduction

λT is the temporal ponderation

One should note that because of the temporal variation, x and y are no longer vectors but
matrices.
The dimension of the problem is quite big : 60000 neurons × 2000 measures = 108 dimensions!

1.3 Modeling

Modeling is a necessariy peliminary step to each optimisation process. How otherwise would
one convert a concret problem into a mathematical formulation which enables its optimisation
and resolution ?

1.3.1 Introductory example : Indiana Jones

In his quest pursuing the Coronado cross, Indiany Jones is blocked in front of a big room filled
with venimous snakes. This room is 10m long and 5m high. Indiany Jones is looking for a way
to pass above the room.

He owns a ladder he can use for this purpose. He blocks one side of the ladder on the
ground with a stone and lays the other side on the wall on the other side of the room.

The question is, where should he pose the ladder exactly in order to make its length as small
as possible thus reducing the chances to break it?

The problem looks this way:

1.3.1.1 Decision variables

• x1 position of the first side of the ladder on the ground
• x2 height of the other side of the ladder on the wall

1.3. Modeling 7

1.3.1.2 Score function

The goal is to minimize the length of the ladder:

f(x) =
√
x12 + x22

Remainder: Pythagore, similar triangles

similar triangles:

a+ c

b+ d
=
c

d
=
a

b

In our case, this gives us :

x1
x2

=
h

x1 − l
=
x2 − h
l

We have some constraints as the borders of the
ladder should be outside the room of the snakes:
x1 ≥ l
x2 ≥ h

1.3.1.3 Complete model

(O)


min
x∈R

√
x21 + x22

sc


x1x2 − hx1 − lx2 = 0

x1 ≥ l
x2 ≥ h

1.3.1.4 Notation

The solution to this problem (O) is the minimal value of the score function, i.e. the length of the
ladder.
But we are not interested in this value, rather we are looking for the corresponding decision
variables values - x1 and x2 - which enables the system to reach this minimal value (the values
that realize the minimal value).

Moreover if f is the score function and X the set of constraints, one can pose:

x· = arg min
x∈X⊆Rn

f(x)

where x is the decision variable realizing the minimum.

8 Chapter 1. Introduction

1.4 Transformation

There is usually a lot more than one single way to modelize a given problem. Numerical algo-
rithms as well as computer software often require a very specific form. Some problems can also
be simplified:

Let g : Rn → R strictly growing on Im(f)

(R1) min
x∈X⊆Rn

g(f(x)) = g(min
x∈X⊆Rn

f(x)) min of g = g (min of f)

arg min
x∈X⊆Rn

g(f(x)) = arg min
x∈X⊆Rn

f(x) argmin of g is argmin of f

Specific cases

(R11) arg min
x∈X⊆Rn

(f(x) + c) = arg min
x∈X⊆Rn

f(x) ∀c ∈ R

(R12) min
x∈X⊆Rn

(f(x) + c) = (min
x∈X⊆Rn

f(x)) + c ∀c ∈ R

(R13) arg min
x∈X⊆Rn

log(f(x)) = arg min
x∈X⊆Rn

f(x) ∀c ∈ R

Example

min
x∈X⊆R2

√
x21 + x22 = min

x∈X⊆R2
(x21 + x22)

(R2) max
x∈X⊆Rn

f(x) = − min
x∈X⊆Rn

−f(x)

(R3) Constraints and inequalities

(R31) g(x) ≤ 0⇔ −g(x) ≥ 0

(R32) g(x) = 0⇔

{
g(x) ≥ 0

g(x) ≤ 0

(R33) x ≥ a⇔

{
x̃ ≥ 0

with x̃ = x− a

1.5 The score function

1.5.1 Definition

Let f : Rn → R be a function and x, y two number such that x, y ∈ R and λ ∈ [0, 1]

1.5. The score function 9

A surface is convexe
⇔ f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y))

In other terms, a convex surface is always above the
tangent hyper plans.

A surface is concave
⇔ f(λx+(1−λ)y) ≥ λf(x)+(1−λ)f(y))

In other terms, a concave surface is always below the
tangent hyper plans.

1.5.2 Note

Convex and concave surfaces play a major role in differential optimisation. One should note that
only convex surfaces are minimizable while only concave surfaces are maximizable.

Also, a function is rarely globally convex or globally concave. Being concave or convex is
rather a local property. Every function can be decomposed or split into chunks where each
chunk is either concave or convex.

The inflection points are the separators of these domains. On each domain where the func-
tion is locally either convex or concave, the function accepts a local minimum, respectively a
local maximum.

10 Chapter 1. Introduction

The global minimum (resp. maximum) is then the minimum (rexp. maximum) of the local
optimums. One should take great care not to forget to evaluate the function on the inflection
points as well as these might well be the local optimums !

1.5.3 Local differential optimisation

From the above reflection comes the term of local differential optimisation. Each and every
algorithm we will be seing are very sensitive to the starting point. From the good and keen
choice of this starting point depends the local optimum the algorithm will converge to.

The right choice of the starting point is thus an essential step in differential optimisation. The
way this starting point is chosen is usually induced by the nature of the problem to be solved.
There is no universal algorithm for this choice.
Whenever this is possible, one should perform a senstitivity analysis (plot) in an attempt to feel
as good as possible the score function.

Surfaces of multiple variables functions can as well posess local minimums and maximums
as one can see in the following function:

f(x1, x2) =
(x1

2 + x2
2)

2
+ sin(x1

2) + sin(x2
2)

which has the following surface:

1.6. Practice 11

1.5.4 Hypothesis

The this lesson, we will mostly considere convexe score functions and will focus on spotting
the minimum in this domain. Also, in this introductory document, we wont take constraints in
consideration.

1.6 Practice

1.6.1 Exercise 1: Transformation

Let f(x) = eln(s) be a function we are trying to maximize. Let’s assume we got some NaN
messages from the optimizing software. We decide then to inject only the h(x) function instead
of the complete one in order to make it behave correctly. The results we get this way are:

maxh(x) = mh

arg maxh(x) = x∗

What can we conclude for

max f(x)?

arg max f(x)?

From (R21) min g(f(x)) = g(min f(x)) we get max f(x) = emax h(x) = emh

From (R21) arg min g(f(x)) = arg min f(x) we get argmax f(x) = argmax h(x) = x∗

CHAPTER 2

Mathematical introduction

Contents
2.1 Recall of mathematical analysis . 13

2.1.1 1D derivative . 13

2.1.2 2D derivative . 14

2.1.3 Secondary partial derivative . 15

2.1.4 Partial differential equations . 15

2.2 The Gradient vector . 15

2.2.1 Directional derivatives . 16

2.2.2 Properties of the gradient vector . 17

2.2.3 Demonstration: the formula of the normal vector 19

2.3 The Hessian matrix . 20

2.3.1 The curvature . 21

2.4 Practice . 21

2.4.1 Exercise 2: recall on derivatives . 21

2.4.2 Exercise 3: The normal vector . 22

2.4.3 Exercise 4 : Gradient . 22

2.4.4 Exercise 5 : Steepest descend, curvature . 23

2.4.5 Exercise 6 : Hessian . 25

2.4.6 Exercise 7 : Normal and gradient vectors . 26

2.4.7 Exercise 10 : Plan curvature . 26

2.1 Recall of mathematical analysis

2.1.1 1D derivative

The derivative function gives us the slop of the line tangent to a specific point on a curve.

Below a 2D dimensionnal derivative function. In this lecture we consider this as 1D (one
single dimension) as the response variable (y) depends on a single input variable (x)

14 Chapter 2. Mathematical introduction

Notation: f ′(x) =
df

dx
(x) = ∂x

Properties:

Let f, g : R→ R

(f + g)′ = f ′ + g′

(αf)′ = αf ′ ∀α ∈ R

We have the following canonical derivative:

(ex)′ = ex (xn)′ = nxn−1 ∀n ∈ N

Also:

(a · x)′ = a · x0 = a · 1 = a

(x)′ = 1 (a)′ = 0

See http://en.wikipedia.org/wiki/Derivative for
other derivatives.

2.1.2 2D derivative

In 2D (2 variable dimensions means 3D considering in addition the response variable) we usually
considere partial differential equations, i.e partial derivative (or directionnal derivatives which
we will see later).

In partial differential analysis, only 1 variable
varies at a time. It’s as taking a slice of the surface
and considering the tangent to this curve delimited
by the slice. Slicing occurs parallel to the axis.

→ let’s fix x2 and vary x1

fx2(x1) =
dfx2(x1)

dx1
=

∂f

∂x1
(x1, x2) = ∂1f(x1, x2)

→ Now let’s fix x1 and vary x2

fx1(x2) =
dfx1(x2)

dx2
=

∂f

∂x2
(x1, x2) = ∂2f(x1, x2)

http://en.wikipedia.org/wiki/Derivative#Derivatives_of_elementary_functions

2.2. The Gradient vector 15

2.1.3 Secondary partial derivative

A secondary partial derivative conists in deriving twice the function according to 1 dimension.

Partial derivative in x1 and x2 :
∂2f

∂x1∂x2
(x1, x2) = ∂12f(x1, x2) ≡ ∂21f(x1, x2)

The equivalence ∂12f(x1, x2) ≡ ∂21f(x1, x2) is true ⇔ the function is continue. This is the
Cauchy-Schwartz theorem.

Deriving twice in the same dimension also makes it a secondary partial derivative, for in-
stance ∂11f(x1, x2), or ∂22f(x1, x2), etc.

For a question of simplicity, we will often use as shorter notation when using partial deriva-
tives:

∂1f(x1, x2) = ∂1f ∂2f(x1, x2) = ∂2f ∂21f(x1, x2) = ∂21f

(See 2.4.1 Exercise 2: recall on derivatives)

2.1.4 Partial differential equations

Quoting wikipedia on http://en.wikipedia.org/wiki/Partial_differential_equation : Partial differen-
tial equations (PDE) are a type of differential equation, i.e., a relation involving a function of
several independent variables and their partial derivatives with respect to those variables.

C2 functions:

Let f : R2 → R a continue fonction twice differentiable with continued derivatives.
This type of functions such as f are called C2 functions.

A function that is at least one time differentiable is called a C1 function.

2.2 The Gradient vector

Let f : Rn → R be a C1 function.

The function ∇f(x) : Rn → Rn is called the
gradient of f and is defined by:

∇f(x) =


∂f(x)
∂x1
...

∂f(x)
∂xn

 =

 ∂1f(x)

...

∂nf(x)



Whenever f is a 2D function:

f : R2 → R(
x1
x2

)
→ f(x1, x2)

∇f(x) =

(
∂1f(x)

∂2f(x)

)

http://en.wikipedia.org/wiki/Partial_differential_equation

16 Chapter 2. Mathematical introduction

The gradient vector is the vector formed by the set of partial derivatives in each dimension.
In higher than 1 dimension, the gradient vector, in its function, is a very similar concept to the
derivative in 1 Dimension..
In 1D, for instance, when the slope of a curve is 0, meaning we reached a maximum or a
minimum (perhaps local), the derivative is 0. In higher dimensions, at the places where the
tangent plane is parrallel to the ground, the gradient vector is the null vector as the project of the
normal on the surface is a point.

2.2.1 Directional derivatives

In the section 2.1.2 above about partial derivatives we have seen that the partial derivative
consists in performing a derivation following of the the dimension axis (x1 or x2) ⇒ this means
cutting the surface with a plan parallel to one of the axis.

But one can derive a function following an arbitrary direction. This is called directional
derivative. Thus, we do not anymore considere a plan parallel to one of the axis, but following
an arbitrary angle α:

2.2. The Gradient vector 17

Let f : Rn → R be a C1 function. Let x ∈ R and
d ∈ Rn, d is a direction vector.
The directionnal derivative of f in x following d
is:

∂df(x) = ∇f(x)td ∈ R

(value of the matricial/scalar product between
the transpose of the gradient vector and the di-
rection vector)
= slope of the red line

It is not strictly required that d is a unit vector. If
one replaced d by a colinear vector such as αd,
the directional derivatove needs to be multiplied
by the α factor as well:

∂αdf(x) = α∂df(x)

In order to get the uniformed standardized di-
rectionnal derivative, one needs to use a vec-
tor of length 1:

∂df(x) = ∇f(x)t·d
||d||

2.2.1.1 Properties

• By using d = ei the standard base vector of Rn, we get the (usual) partial derivatives.
• Caution: the directionnal derivative being defined relatively to a multiplicative factor, it is

recommended to work with directions d having a norm of length 1, i.e. unit vectors
when one wants to compare slopes.
This is called normalizing the directional derivative

2.2.2 Properties of the gradient vector

Here on the Im(f) surface we block a point P = (x1, x2) on the ground. The position of the
point P on the surface is given by (x1, x2, f(x1, x2)).

18 Chapter 2. Mathematical introduction

The surface normal vector in P is given by n =

 ∂1f(p)

∂2f(p)

−1

.

The gradient in P is the projection of the normal normal on the ground. One simply gets rid of

the third coordinate and finds: ∇f(p) =

(
∂1f(p)

∂2f(p)

)

Properties:

• The surface normal, i.e. a vector, of the surface f(x1, x2) is n = (∂1f, ∂2f,−1)

Reminder: the normal vector is a vector that is perpendicular to that surface. 1

This vector is not necessarily a unit vector, i.e. it’s norm is not necessarily 1 (and most
likely won’t be).

• The gradient is a projection on the ground of n = the surface normal of f(x).

• The gradient is always perpendicular to the contour lines ("courbes de niveau").
I.e. the gradient is always perpendicular to the tangent line to the contour lines.

• The gradient gives the direction of the steepest slope.

• The anti-gradient (negative of the gradient) always gives the steepest descent.
For a convexe function, d is a descending direction⇔ dt∇f(x) < 0

We should always follow the gradient (∇f(x)) to climb as fast as possible and always follow
the anti-gradient (−∇f(x)) to go down as fast as possible.
For instance, on a mountain, to reach the top, an approach could be to follow the gradient all the
time at every step.

One should note that when the surface is concave, the normal vector points to the inside
of the surface. On the contrary when the surface is convexe, the normal vector points on the
outside.

In every case, the normal vector heads to the bottom as its third component is -1, a negative
value.

1A normal to a non-flat surface at a point P on the surface is a vector perpendicular to the tangent plane to that
surface at P

2.2. The Gradient vector 19

2.2.3 Demonstration: the formula of the normal vector

We provide here a demonstration of the formula for the normal vector n =

 ∂1f(p)

∂2f(p)

−1

.

A plan surface has an infinity of normal vectors ~n,
α~n, −α~n, etc.

Let’s imagine ~n is define with the following compo-

nents, n =

 a

b

c



−1
c × ~n is still a normal vector:

 −a
c

− b
c

−1

 yet this with the last component set to −1.

Let us now considere our vector n such as n =

 −a
c

− b
c

−1

 =

 n1
n2
n3

 with n3 = −1 and let’s

try to resolve n1 and n2 to something more graceful.

For this, let us considere the point A on the plan π. Now if we considere another point P. we
now that the point P also belongs to plan π ⇔ the vector AP is orthogonal to the normal vector

20 Chapter 2. Mathematical introduction

⇔ ~AP⊥~n.

P ∈ π ⇔ ~AP⊥~n (~AP ortho. to normal)

⇔ ~AP · ~n = 0

⇔ (~OP − ~OA) · ~n = 0 (Chasles relation)

⇔

 x1 − a1
x2 − a2
x3 − a3

 ·
 n1

n2
n3

 = 0

⇔ n1(x1 − a1) + n2(x2 − a2) + n3(x3 − a3) = 0

⇔ x1n1 − n1a1 + n2x2 − a2n2 + n3x3 − a3n3 = 0

⇔ x1n1 + n2x2 + n3x3 = n1a1 + a2n2 + a3n3︸ ︷︷ ︸
c (constant as doesn’t depend on x)

⇔ x3 =
c− (x1n1 + x2n2

n3

⇔ f(x1, x2) =
c− (x1n1 + x2n2

n3
(x3 = val of the func. = f(x1, x2))

Now what if we derive f(x1, x2) according to that new expression of f:

∂1f = −n1
n3

with n3 = −1⇒ ∂1f = n1

∂2f = −n2
n3

with n3 = −1⇒ ∂2f = n2

And hence n =

 n1
n2
n3

 =

 ∂1f

∂2f

−1


(See practice TODO ref for another demonstration)

2.3 The Hessian matrix

The hessian matrix (fr: matrice hessienne) is built using the secondary partial derivatives. The
function it defines is called the Hessian (fr: Le Hessien).

Let f : Rn → R be a C2 function. The function∇2f(x) : Rn→Mn×n(R) is called the Hessian
of f . It is defined by the hessian matrix:

∇2f(x) =


∂2f(x)
∂x12

... ∂2f(x)
∂x1∂xn

...
∂2f(x)
∂xn∂x1

... ∂2f(x)
∂xn2

 =

 ∂11f(x) ... ∂1nf(x)

...

∂n1f(x) ... ∂nnf(x)

 ∈Mn×n(R)

2.4. Practice 21

∇2f(x) is a symetric matrix as ∂12f(x) = ∂21f(x) ⇐ Cauchy-Schwartz, the derivation order is
not relevant.

As such one only needs to compute, for instance for a 3× 3 matrix:

∇2f =

 ∂11f(x) ∗ ∗
∂21f(x) ∂22f(x) ∗
∂31f(x) ∂32 ∂33f(x)


The hessian matrix provides a description of the curvature (fr: courbure) of the slope.

2.3.1 The curvature

Let f : Rn → R be a C2 function. Let x ∈ R and
d ∈ Rn, d is a direction vector.
The curvature of f in x following d is:

curvature(f,d)(x) =
dt∇2f(x)d

dtd

One should note that the curvature in the
opposite direction of d is exactly the same that
the curvature in the d direction.

← (combination of matrix (scalar) product be-
tween the direction vector, the transpose of the
direction vector and the Hessian)

2.4 Practice

2.4.1 Exercise 2: recall on derivatives

2.4.1.1 Part I : simple derivatives

Compute:

• (3ex)′ = 3(ex)′ = 3ex

• (2x3)′ = 3(x3)′ = 2× 3× x3−1 = 6x2

• (
1

2
x2 − 5ex)′ = (

1

2
x2)′ − (5ex)′ = x− 5ex

2.4.1.2 Part II : partial derivatives

Let f(x1, x2) = 3ex1 − 4x1x2 + 7x2
2

Compute:

• ∂1f(x1, x2) = 3ex1 − 4x2
• ∂2f(x1, x2) = −4x1 + 14x2
• ∂12f(x1, x2) = 0

• ∂21f(x1, x2) = 0

As an observation, one should note that as expected ∂12f(x1, x2) = ∂21f(x1, x2)

22 Chapter 2. Mathematical introduction

2.4.2 Exercise 3: The normal vector

2.4.2.1 Part I : Gradient

Let n = (−3 4 π)t a vector normal to the surface of f(x1, x2) at the point xa. What is the gradient
of f at the point xa ?

Let’s first express the normal vector in the usual form, with the third component set to -1:

 ∂1f

∂2f

−1

 =

 −3

4

π

 · − 1

π
=

 3
π

− 4
π

−1


We know now ∂1f = 3

π and ∂2f = − 4
π

Thus ∇f = (3
π −

4
π)

2.4.2.2 Part II : Normal vector

Let ∇f(xa) = (7 3)t the gradient of f(x1, x2) at the point xa. What is the normal vector to the
surface of f(x1, x2) at the point xa ?

We know the gradient is the projection on the ground of the normal vector, so we know xa1 and
xa2 of the normal vector. In addition, we know the third component is -1.
Thus nxa = (7 3 − 1)t

2.4.3 Exercise 4 : Gradient

Let f(x1, x2, x3) = ex1 + x1
2x3 − x1x2x3

2.4.3.1 Part I : Gradient

Compute the gradient ∇f(x) of f :

∇f(x1, x2, x3) =

 ∂1f

∂2f

∂3f

 =

 ex1 + 2x1x3 − x2x3
−x1x3

x1
2 − x1x2



2.4.3.2 Part II : Directional derivative

Compute the directional derivative of f in the direction d = (d1 d2 d3)
t

2.4. Practice 23

The directional derivative ∂df(x) is the transpose of the gradient multiplied by the direction:
∇f(x)td. Thus:

∂df(x) = ∇f(x)td

= dt∇f(x)

= (d1 d2 d3)

 ex1 + 2x1x3 + x2x3
−x1x3

x1
2 − x2x3


= d1(ex1 + 2x1x3 + x2x3)− d2(x1x3) + d3(x1

2 − x2x3)

2.4.4 Exercise 5 : Steepest descend, curvature

Let f be a function of the form:

f(x1, x2) =
1

2
x1

2 + 2x2
2

Part I

Compute the direction of the steepest slope in (1, 1)

Part I - Solution

The gradient is ∇f(x) = (x1 4x2)
t

The steepest slope occurs in the direction of the anti-gradient:

−∇f(x) = (−x1 − 4x2)
t = (−1 − 4)t

Part II

Compute the directionnal derivatives, then the normalized directionnal derivatives in the following
directions:

• d1 = −∇f

• d2 =

(
−1

−1

)
• d3 =

(
1

−3

)
And make sure the anti-gradient actually is the steepest slope!

Part II - Solution

The directionnal derivative is computed as follows:

∂df(x) = ∇f(x)td = (x1 4x2)

(
x1
4x2

)
= d1x1 + 4d2x2

• d1 = −∇f ⇒ ∂d1f(x) = −x12 − 16x2
2 ⇒ in (1, 1) : ∂d1f(1, 1) = −1− 16 = −17

24 Chapter 2. Mathematical introduction

• d2 =

(
−1

−1

)
= −x1 − 4x2 ⇒ in (1, 1) : ∂d1f(1, 1) = −1− 4 = −5

• d3 =

(
1

−3

)
= x1 − 12x2 ⇒ in (1, 1) : ∂d1f(1, 1) = 1− 12 = −11

Caution here : one cannot take any conclusion with these values since the direction vector
needs to be normalized before any comparison can be performed.

Normalizing the direction vectors:

• d1 = d1
||d1|| = 1

||
√
−x12+(−4x2)2||

(
−x1
−4x2

)
⇒ in (1, 1) : 1

||
√
1+16||

(
−1

−4

)
• d2 = d2

||d2|| = 1

||
√
−12+(−1)2||

(
−1

−1

)
= 1
||
√
2||

(
−1

−1

)
• d3 = d3

||d3|| = 1

||
√

12+(−3)2||

(
1

−3

)
= 1
||
√
10||

(
1

−3

)
From here we can compute the normalized directionnal derivatives:

• ∂d1f(1, 1) = −17√
17

= −4.1231

• ∂d2f(1, 1) = −5√
2

= −3.5355

• ∂d2f(1, 1) = −11√
10

= −3.4785

Which confirms that the anti-gradient is the steepest slope

Part III

Compute the curvature of f in the following directions

• d1 = (1 4)t

• d2 = (1 1)t

• d3 = (−1 3)t

Then compute the condition number of f . Specifically, compute the highest and the littlest
curvature of function f . Check the coherence of this new informations with the curvatures com-
puted above.

Part III - Solution

The curvature has the following formula : curvature(f,di)(x) = di
t∇2f(x)di
di
tdi

. We need the
hessian to compute it:

∇2f(x) =

(
∂11f(x) ∂12f(x)

∂21f(x) ∂22f(x)

)
=

(
1 0

0 4

)
∈M2×2(R) (symetrical)

The curvature is hence independent from the position of x. As such:

• curvature(f,d1)(x) =

d1
t

 1 0

0 4

d1
d1
td1

=

(1 4)

 1

16


17 = 65

17

• curvature(f,d2)(x) = 5
2

2.4. Practice 25

• curvature(f,d3)(x) = 37
10

The greatest and the littlest possible curvatures of the function f are given by the eigenvalues
of the hessian. Here the hessian is a diagonal matrix hence the eigenvaluesd are read in the
diagonal: 1 and 4.
The condition number hence is 4

1 = 4

In addition, one can check that the curvatures computed above are indeed within the bounds
[1, 4].

2.4.5 Exercise 6 : Hessian

Let f(x1, x2, x3) = ex1 + x1
2x3 − x1x2x3

Compute the hessian matrix of f:

∇2f(x1, x2, x3) =

 ∂11f ∗ ∗
∂21f ∂22f ∗
∂31f ∂32f ∂33f

 =

 ex1 + 2x3 ∗ ∗
−x3 0 ∗

2x1 − x2 −x1 0



26 Chapter 2. Mathematical introduction

Using the fast calculatiom method:

∂12f = ∂12(e
x1) + ∂12(x1

2x3)− ∂12(x1x2x3)
= 0 + 0− x3
= −x3

∂13f = ∂13(e
x1) + ∂13(x1

2x3)− ∂13(x1x2x3)
= 0 + 2x1 − x2
= 2x1 − x2

∂23f = ∂23(e
x1) + ∂23(x1

2x3)− ∂23(x1x2x3)
= 0 + 0− x1
= −x1

∂11f = ∂11(e
x1) + ∂11(x1

2x3)− ∂11(x1x2x3)
= ex1 + 2x3 − 0

= ex1 + 2x3

∂22f = ∂22(e
x1) + ∂22(x1

2x3)− ∂22(x1x2x3)
= 0 + 0− 0

= 0

∂33f = ∂33(e
x1) + ∂33(x1

2x3)− ∂33(x1x2x3)
= 0 + 0− 0

= 0

2.4.6 Exercise 7 : Normal and gradient vectors

TODO

2.4.7 Exercise 10 : Plan curvature

Compute the curvature of a plan surface and give your observations. A plan surface function
has the form: f(x1, x2) = a1x1 + 12x2 + a3

2.4.7.1 Primary derivatives

• ∂1f = 1

• ∂2f = 1

2.4. Practice 27

2.4.7.2 Secondary derivatives

• ∂11 = ∂12 = ∂21 = ∂22 = 0

2.4.7.3 Hessian matrix

• ∇2f =

(
∂11 ∂12
∂21 ∂22

)
=

(
0 0

0 0

)

2.4.7.4 Curvature

Whatever direction d we look at, and whatever point
(
x1
x2

)
we stand at, the curvature would

be:

curvature(f,d)(x1, x2) =
dt∇2fd

dtd
=
dt0d

dtd
= 0

CHAPTER 3

Introduction to matrix calculations

Contents
3.1 Introduction . 29

3.1.1 General form . 30

3.1.2 Transpose . 30

3.2 2 x 2 matrices . 30

3.2.1 Properties . 30

3.2.2 Inverting a 2 x 2 matrix . 31

3.2.3 Diagonal matrix . 31

3.3 Quick geometry reminder . 31

3.4 Spectral matrix analysis . 31

3.4.1 Find eigenvalues . 32

3.4.2 Find eigenvectors . 33

3.4.3 Diagonalization . 33

3.4.4 Example . 34

3.5 Geometrical interpretation of the eigenvalues . 36

3.5.1 The Rayleigh-Ritz theorem . 36

3.6 Condition number . 36

3.6.1 Geometrical interpretation of the condition number 37

3.7 Practice . 37

3.7.1 Exercise 8 : eigenvalues . 37

3.7.2 Exercise 9 : Eigenvalues of a diagonal matrix 39

3.1 Introduction

We have seen in the previous chapter that derivatives and differential calculations enable us to
get information on the geometry of a surface.
But there is another tool for this purpose: matrix calculation !
→ As we will now see, both are required for differential optimisation.

We will mostly limit our introduction on 2x2 matrices in this chapter as such matrix are suffi-
cient for most cases in differential optimisation.

30 Chapter 3. Introduction to matrix calculations

3.1.1 General form

The general form of a Matrix of size m× n with its coefficient in R is as follows:

Matrix A :A ∈Mm×n(R) =

 a11 ... a1n
...

am1 ... amn

 = (aij) ∈Mm×n(R)

3.1.2 Transpose

The transpose of a matrix is another matrix
corresponding to the initial one where the rows
have become columns and the columns have
become rows.
One should note that a matrix is equals to its
transpose when it is a symetrical matrix, a di-
agonal matrix or the null matrix.

 a b c

∗ ∗ ∗
∗ ∗ ∗

 =

 a ∗ ∗
b ∗ ∗
c ∗ ∗

t

(← These notions are introduce later).

3.2 2 x 2 matrices

As stated in the introduction, we will mostly focus on 2 × 2 matrices in this chapter and in the
remainder of the document for simplicity purpose as they are most often sufficient in differential
optimisation.
A 2× 2 has the following form:

Matrix A : A =

(
a11 a12
a21 a22

)
= (aij) ∈M2×2(R)

3.2.1 Properties

A few different characteristics of a 2 x 2 matrix can be easily computed.

Determinant : det(A) = a11a22 − a21a12 ∈ R

Notation: the determinant is sometimes noted |A|.
(Note: this is much more complicated for a greater than 2 x 2 matrix)

Trace : trace(A) = a11 + a22 ∈ R

(Sum of the diagonal elements)

3.3. Quick geometry reminder 31

3.2.2 Inverting a 2 x 2 matrix

If A =

(
a11 a12
a21 a22

)
= (aij) ∈M2×2(R) Then A−1 =

1

det(A)

(
a22 −a12
−a21 a11

)
with det(A) = |A| = a11a22 − a12a21

3.2.3 Diagonal matrix

2 x 2 diagonal matrices are interesting in many ways, one of them being that they are easily
inversible:

If A =

(
a11 0

0 a22

)
= (aij) ∈M2×2(R)

(and aij = 0⇔ i 6= j)

Then A−1 =

(
a−111 0

0 a−122

)

In addition, as we will see later, the eigen-values of a diagonal matrix are the values shown
on the diagonal, the values in the matrix itself.

Also, multipliying two diagonal matrices is straightforward:

A ∈ diag_M2×2 ·B ∈ diag_M2×2 =

(
a11 0

0 a22

)
·
(
b11 0

0 b22

)
=

(
a11b11 0

0 a22b22

)

3.3 Quick geometry reminder

In 2D, the equation of a line is as follows : ax1 + b = y

One can write it this way : ax1 + b = x2
Or even this way : n1x1 + n2x2 + k + k = 0 which gives us the equation of the line

The n1 and n2 coefficients give us the normal vector (⊥line) : n =

(
n1
n2

)

And as well (one of) the vector of the line:
(
−n2
n1

)

3.4 Spectral matrix analysis

Shortly put, the spectral anlysis of a matrix consists in finding its eigenvalues and eigenvectors.
One also calls it the diagonalization of the matrix.

Let An×n be a square matrix

An eigenvalue λ and an eigenvector v of the matrix A are such that they respect the following
property:

32 Chapter 3. Introduction to matrix calculations

Av = λv ⇔=


v eigenvector of A,

λ eigenvalue of A

λ ∈ R

Not every matrix has eigenvalues and eigenvectors. However, symetric matrices always have
eigenvalues and eignenvectors.

There are usually an infinite number of eigenvectors andf eigenvalues for a given matrix. The
whole purpose of the exercise consists in finding the eigenvalues λi and the eigenvectors vi
such that Avi = λvi.
We want at least two of the eingenvalues and eigenvectors.

Comming back to our initial equation Av = λv, the issue we have here is that this is a one
equation, two variables system which means it has an infinite number of solutions.
We will see a way for finding at least 2 solutions to this system.

3.4.1 Find eigenvalues

First, let’s find the eigenvalues. Let’s say:

Av = λv ⇔ Av − λv = 0

⇔ (A− λI)︸ ︷︷ ︸ v = 0 With I the identity matrix

is a matrix and v cannot be null, hence:

⇔ (A− λI) = 0

⇔ det(A− λI) = 0 a matrix is null⇔ its det is null

For a 2 x 2 matrix, this is happily quite easily solved:

det(A− λI) = 0⇔
∣∣∣∣(a11 a12

a21 a22

)
− λ

(
1 0

0 1

)∣∣∣∣ = 0 |...| = det(...)

⇔
∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0

⇔ (a11 − λ)(a22 − λ)− a21a12 = 0 using the det(..) formula

⇔ λ2 − λ(a11 + a22︸ ︷︷ ︸) + a11a22 − a21a12︸ ︷︷ ︸ = 0 simply resolving the product

trace(A) det(A)

⇔ λ2 − λ · trace(a) + |A| = 0 (note: only works for 2 x 2 matrix) 1

Note: λ2 − λ · trace(a) + |A| = PA(λ) is the characteristic polynomial of A

3.4. Spectral matrix analysis 33

And now we face a well known quadratic equation we can easily solve using Viet :

ax2 + bx+ c = 0⇔ x1,2 =
−b±

√
b2 − 4ac

2a
→ in our case:

{
x = λ b = −trace(A)

a = 1 c = det(A)

And thanks to this method, we find normally 2 (but at least 1 if both are equals) eigenvalues λ1,2
which are the root of the characteristic polynom PA(λ).

Note λ1 and λ2 are the root of the characteristic polynoms and enable it’s factorization PA(λ) =

λ2 − λ · trace(a) + |A|) = (λ− λ1)(λ− λ2)

3.4.2 Find eigenvectors

Having 2 (or at least 1) eigenvalue(s), we can now find the eigenvectors. This is quite easily
done actually by simply injecting the eigenvalue in the initial system of equations. We actually
do it two times, once for each egeinvalue and find this way usually different eigenvectors.

Let’s assume we have λ1 and λ2. In order to solve one of them we can pose:

Av = λv ⇔
(
a11 a12
a21 a22

)(
v1
v2

)
= λ

(
v1
v2

)
⇔

{
a11v1 + a12v2 − λv1 = 0

a21v1 + a22v2 − λv2 = 0

⇔

{
v1(a11 − λ) + a12v2 = 0

v2(a22 − λ) + a21v1 = 0

So all we need to do is inject first λ1 to find v1, then λ2 to find v2 in the above system of
equations and we have our both eigenvectors.

3.4.3 Diagonalization

Once the eigenvalues λi ∈ R are found, the diagonalization of matrix A, is a diagonal matrix
which possess the λi values on the diagonal and 0 everywhere else:

diag(A) =

 λ1 0 0

0 ... 0

0 0 λn



It has the following important properties :

34 Chapter 3. Introduction to matrix calculations

λi > 0⇒ A is Positive-definite

A matrix An×n is positive-definite if each
and every of its eigenvalues are positive.

λi ≥ 0⇒ A is Positive-semidefinite

A matrix Ax×x is positive-semidefinite if each
and every of its eigenvalues are positive or null.

Note: Every symetric matrix is diagonalizable.

3.4.3.1 Diagonal matrices specific cases

A diagonal matrix is a special matrix of the form:

 x1 0 0

0 ... 0

0 0 xn


In this case, the xi values on the diagonal of the matrix correspond strictly to its eigenvalues
λi. A diagonal matrix is always equals/identical to its own diagonalization.

3.4.4 Example

Let A =

(
0 −1

3 4

)
∈Mn×n

3.4.4.1 Eigenvalues

First we need the trace(A) and det(A) :

• trace(A) = a11 + a22 = 0 + 4 = 4

• det(A) = a11a22 − a21a12 = 0× 4− 3× (−1) = 3

Let’s inject those values in :

ax2 + bx+ c = 0⇔ x1,2 =
−b±

√
b2 − 4ac

2a
→ with:

{
x = λ b = −trace(A) = −4

a = 1 c = det(A) = 3

Which gives us:

λ1,2 =
4±
√

42 − 4× 3

2
=

4±
√

4

2
=

{
3

1

3.4.4.2 Eigenvectors

First for λ1 = 1

Let’s assume v is the eigenvector matching the eigenvalue λ1 = 1:

3.4. Spectral matrix analysis 35

One simply needs to inject λ1 = 1 as well as the matrix values in the equation system we have
seen above:

{
v1(a11 − λ) + a12v2 = 0

v2(a22 − λ) + a21v1 = 0
⇔

{
v1(0− 1) + (−1)v2 = 0

v2(4− 1) + 3v1 = 0

⇔

{
−v1 − v2 = 0

3v1 + 3v2 = 0

⇔

{
v1 + v2 = 0

v1 + v2 = 0
Can happen⇒ unsolved

⇔ An infinite number of eigenvectors

The above situation, where the system of equations appears to be unsolved can happen. In
this case we have the equation of a line and all vectors parralel to this line are egienvectors.
Using the quick geometry reminder introduced in 3.3, we can get one of these vectors:

v1 + v2 = 0⇒ n =

(
1

1

)
⇒ v =

(
−1

1

)
One might want to normalize it:

v = 1√
2

(
−1

1

)
Second for λ2 = 3

Let’s assume w is the eigenvector matching the eigenvalue λ1 = 1, injecting again λ2 = 3 as
well as the matrix values in the equation system we have seen above:

{
w1(a11 − λ) + a12w2 = 0

w2(a22 − λ) + a21w1 = 0
⇔

{
w1(0− 3) + (−1)w2 = 0

w2(4− 3) + 3w1 = 0

⇔

{
−3w1 − w2 = 0

3w1 + 1w2 = 0

⇔

{
w1 + w2 = 0

w1 + w2 = 0

⇔ 1 equation, 2 variables⇒ infinite number of eigenvectors

Again using the equation of the line, on can find one of the eigenvectors:

3w1 + w2 = 0⇒ n =

(
3

1

)
⇒ w =

(
−1

3

)
⇒ wnorm =

1

sqrt10

(
−1

3

)

36 Chapter 3. Introduction to matrix calculations

3.5 Geometrical interpretation of the eigenvalues

Let An×n be a squared symetrical matrix and di an eigenvector eigen-λi. We know that:

Av = λv ⇔ Adi = λidi simple variable rename v = di

⇔ dtiAdi = dtiλid divide by dt

⇔ dtiAd

dtidi
= λi

Now what if A is the Hessian of f, A = ∇2f(x) ?

λi =
dti∇2f(x)d

dtidi
= curvature(f,di)(x)

In other terms, if An×n is the Hessian of a twice differentiable (∈ C2) function f, then λi gives
us the curvature of f in the direction of the eigenvector di.

The Hessian is a matrix of functions of x. Only for specific x values it is defined as a matrix
of numbers.
Hence, the λi one might find provided solely the f function will be expressed as functions of x as
well. Only for specific x values, i.e. specific and precise points in the domain, the λi eigenvalues
and the eigenvectors will be defined as numbers, hence giving a real direction and curvature
value.

3.5.1 The Rayleigh-Ritz theorem

Let f be a function in C2.

• The highest possible curvature in x of f : R2 → R is given by the highest eigenvalue of
the Hessian ∇2f .
• The smallest possible curvature in x of f is given by the smallest eigenvalue of the hessian.
• The corresponding eigenvectors provide us with the direction of these curvatures

The interesting implication of this is that by moving from a point in the direction of one of the
eigenvector, one can follow either the minimal curvature or the maximale curvature.

3.6 Condition number

The condition number of a function with respect to an argument measures the asymptotically
worst case of how much the function can change in proportion to small changes in the argument.
The "function" is the solution of a problem and the "arguments" are the data in the problem. A
problem with a low condition number is said to be well-conditioned, while a problem with a high
condition number is said to be ill-conditioned.

3.7. Practice 37

Condition Number - Matrix:
The condition number of a matrix is the ratio between its highest eigenvalue and its
lowest eigenvalue.

Condition Number - Function:
The condition number of a function is the condition number of its Hessian matrix
∇2f , i.e. the ratio between its highest and its smallest eigenvalues.

As we have seen in 3.4, not every function has eigenvalues, but symetrical matrices always
have. The hessian ∇2f is a symetrical matrix. How convenient ,.

3.6.1 Geometrical interpretation of the condition number

Geometrically, the more the condition number of f is far from the value 1, the highest are the
difference of the curvatures in the different directions we look at.

A function is:

ill-conditioned : if it has an important difference of curvature - condition mumber - in
two different directions.

well-conditioned : if its condition number of close to 1

A condition number close to 1 means the countour curves are very close to concentric circles.

3.7 Practice

3.7.1 Exercise 8 : eigenvalues

Let A be the following matrix:
(

5 −3

6 −4

)
Compute the eigenvectors and the eigenvalues of matrix A.
Then answer: is A positive-definite or positive-semidefinite or nothing at all ?

3.7.1.1 Eigenvalues

According to 3.4.1, we need to resolve the characteristic polynomial of A :
PA(λ) = λ2 − λ · trace(a) + |A|.

With:

• |A| = det(A) = a11a22 − a12a21 = −20 + 18 = −2

• trace(A) = a11 + a22 = 1

38 Chapter 3. Introduction to matrix calculations

Hence PA(λ) = 1λ2 − 1λ− 2, using Viet with a = 1, b = −1, c = −2:

λ1,2 =
−b±

√
b2 − 4ac

2a
=

1±
√

1 + 8

2
=

1± 3

2
=

{
2

−1

Hence λ1 = −1 and λ2 = 2

3.7.1.2 Eigenvectors

~v for λ1 = −1

Using the formla in 3.4.2, we can pose:{
w1(a11 − λ2) + a12v2 = 0

v2(a22 − λ2) + a21v1 = 0
⇒

{
v1(5 + 1) + (−3)v2 = 0

v2(−4 + 1) + 6v1 = 0

⇒

{
6v1 − 3v2 = 0

6v1 − 3v2 = 0

⇒ 2v1 = v2

⇒ an infinite amount of solution, including: v = (1 2)t

~w for λ2 = 2

{
v1(a11 − λ1) + a12w2 = 0

w2(a22 − λ1) + a21w1 = 0
⇒

{
w1(5− 2) + (−3)w2 = 0

w2(−4− 2) + 6w1 = 0

⇒

{
3w1 − 3w2 = 0

6w1 − 6w2 = 0

⇒ w1 = w2

⇒ an infinite amount of solution, including: w = (1 1)t

Normalized eigenvectors

One might want to normalize the eigenvectors:

• The eigenvector vnorm = v
||v|| = 1√

5
(12)t matches the eigenvalue λ1 = −1

• The eigenvector wnorm = w
||w|| = 1√

2
(11)t matches the eigenvalue λ1 = 2

3.7.1.3 Positive definition

As one of the eigenvalues is negative, the matrix A is neither positive-definite nor positive-
semidefinite.

3.7. Practice 39

3.7.2 Exercise 9 : Eigenvalues of a diagonal matrix

Compute the eigenvalues of matrix A below and give your observations.

A =

(
4 0

0 −3

)

According to 3.4.1, we need to resolve the characteristic polynomial of A :
PA(λ) = λ2 − λ · trace(a) + |A|.

With:

• |A| = det(A) = a11a22 − a12a21 = −12 + 0 = −12

• trace(A) = a11 + a22 = 1

Hence PA(λ) = 1λ2 − 1λ− 12, using Viet with a = 1, b = −1, c = −12:

λ1,2 =
−b±

√
b2 − 4ac

2a
=

1±
√

1 + 48

2
=

1± 7

2
=

{
4

−3

which gives us the following diagonal matrix:

Diag(A) =

(
λ1 0

0 λ2

)
=

(
4 0

0 −3

)

Observation: as expected, one falls back on the original diagonal matrix. As stated in 3.4.3.1,
a diagonal matrix is always equal to its diagonalization

CHAPTER 4

Preconditionning

Contents
4.1 Preconditionning . 41

4.1.1 Definition: preconditionning . 42

4.1.2 Principle . 42

4.1.3 The Cholesky theorem . 42

4.2 Example in 2D . 43

4.2.1 Compute Hessian . 43

4.2.2 Cholesky Decomposition . 43

4.2.3 Variable Change . 44

4.2.4 Compute function f̃ . 44

4.2.5 Condition Number . 44

4.2.6 Contour lines . 44

4.3 Practice . 45

4.3.1 Exercise 11: preconditionning and variable change 45

4.3.2 Reverting variable change . 45

4.3.3 Inverting the matrix . 45

4.3.4 Computing x∗ . 46

4.3.5 Exercise 12: preconditionning and variable change 46

4.1 Preconditionning

It is a lot easier with any algorithm to optimise a well-conditionned function. For this reason,
before running any algorithm, a variable change might need to be applied in order to have a
better condition-number of the score function.
This variable change is called Preconditionning.

→ The optimisation algorithm we will be seing later require us to have countour lines as close
as possible to concentric circles.

42 Chapter 4. Preconditionning

4.1.1 Definition: preconditionning

Let f : Rn → R be C2 function and x a vector in Rn.

The preconditionning of f in x defines a variable change x̃ = Mx using :

• an inversible matrix Mn×n and
• a function f̃(x̃) = f(M−1x̃)

in such a way that the condition number of f̃ in x̃ = Mx is better than the condition number
of f in x

4.1.2 Principle

Let f(x) be an unknown function.

On can pose x̃ = g(x) and g is inversible
So x = g−1(x̃)

And hence f(x) = f(g−1︸ ︷︷ ︸(x̃)) = f̃(x̃)

= f̃

Example: let f(x) = x2 + 2,
let’s pose x̃ = x2,
hence f̃(x̃) = x̃+ 2 which is simplier.

4.1.3 The Cholesky theorem

Let f : Rn → R be C2 function with a Hessian matrix ∇2f positive-definite and x a vector in Rn.

The best possible preconditionning of f in x occurs with the variable change induced by the
Cholesky decomposition of the Hessian:

∇2f = LLt =

 ∗ 0 0

∗ ∗ 0

∗ ∗ ∗

 =

 ∗ ∗ ∗0 ∗ ∗
0 0 ∗


(example for 3× 3 matrix)

where Ln×n is a triangular lower matrix

If such an L matrix can be found, then
the induced variable change is:

x̃ = Ltx =

 ∗ ∗ ∗0 ∗ ∗
0 0 ∗

x

Shortly put, Cholesky states that:

• if the Hessian ∇2f of a function f is positive-definite, it is always possible to compute a
Cholesky decomposition ∇2f = L · Lt

• Those both new matrices enables us to build the best possible preconditionning of the
function f by posing

• the variable change x̃ = Lt · x
• the new function f̃(x̃) = f(L−1x̃)

4.2. Example in 2D 43

4.1.3.1 The diagonal matrices case

Finding the cholesky decomposition for an usual positive-definite matrix usually is a tough task.
But diagonal matrices form an interesting case as the Cholesky decomposition can be computed
out-of-the-box.

Let’s A be a matrix, A ∈ diag_M2×2, then the matrix L ∈ M2×2 such that A = L · Lt is easy
to find:

A =

(
a11 0

0 a22

)
=

(√
a11 0

0
√
a22

)
︸ ︷︷ ︸ ·

(√
a11 0

0
√
a22

)
︸ ︷︷ ︸

L Lt

4.2 Example in 2D

Precondition function f(x1, x2) = 2x1
2 + 9x2

2

4.2.1 Compute Hessian

The condition number of a function is defined as the condition number of its Hessian matrix. We
first need the Hessian matrix:

∇2f =

(
∂11 ∂12
∂21 ∂22

)
=

(
4 0

0 18

)

→ Luckily, the hessian is a diagonal matrix. Further computation will be easy.

Note: On can see that the condition number of the function f is indeed not very good. The
condition number of a function is the condition number of its Hessian matrix.
Here the hessian matrix is a diagonal matrix and hence the eigenvalues are simply the numbers
in the diagonal.

Hence cond(f) =
λmax
λmin

=
18

4
= 4.5 which is far from the target value 1.

4.2.2 Cholesky Decomposition

Now we should find the L matrix such that ∇2f = L ·Lt. As we have seen in 4.1.3.1, this is easy
for diagonal matrices:

∇2f =

(
4 0

0 18

)(
2 0

0 3
√

2

)
·
(

2 0

0 3
√

2

)

44 Chapter 4. Preconditionning

4.2.3 Variable Change

We can now compute the x̃ variable from the x variable using the L matrix:

x̃ =

(
2 0

0 3
√

2

)
x⇔

{
x̃1 = 2x1

x̃2 = 3
√

2x2

As well as x from the x̃ variable:

x =

(
1
2 0

0 1
3
√
2

)
x̃ =

(
1
2 0

0
√
2
6

)
x̃⇔

{
x1 = 1

2 x̃1

x2 =
√
2
6 x̃2

4.2.4 Compute function f̃

We can now compute the preconditonned f̃ function by substituting the x1 and x2 expressions
in the original f function:

f(x1, x2) = 2x1
2 + 9x2

2 and

{
x1 = 1

2 x̃1

x2 =
√
2
6 x̃2

⇒ f̃(x̃1, x̃2) = 2(
1

2
x̃1)

2 + 9(

√
2

6
x̃2)

2

⇒ f̃(x̃1, x̃2) =
1

2
x̃21 +

1

2
x̃22

4.2.5 Condition Number

The preconditionning should have make the condition number better, as close as possible to 1.
Let’s check this.

The Hessian of f̃ is ∇2f =

(
∂11 ∂12
∂21 ∂22

)
=

(
1 0

0 1

)
which is a diagonal matrix as well and

hence cond(f̃) = λmax
λmin

= 1
1 = 1

A condition number value of 1 means the countour curves are perfect concentric circles, i.e.
we have achieved the best possible preconditionning.

4.2.6 Contour lines

Below is a visualization of the countour curves for both functions:

4.3. Practice 45

4.3 Practice

4.3.1 Exercise 11: preconditionning and variable change

Let f(x) be an ill-conditionned function and f̃(x̃) be its best linear preconditionning obtained
throug the variable change x̃ = Mx.

Let’s assume we know M as M =

(
2 −1

0 3

)
What is argmin f(x) if argmin f̃(x̃) = x̃∗ ?

4.3.2 Reverting variable change

If x̃ = Mx then x = M−1x̃. Hence we need to compute the inverse of the matrix M

4.3.3 Inverting the matrix

Let’s compute the inverse of the matrix M . There are several ways, for instance using the
formula presented in 3.2.2 or a simple equations system:

M ·M−1 = I ⇔
(

2 −1

0 3

)
·
(
a b

c d

)
=

(
1 0

0 1

)

⇔


2a− c = 1

3c = 0

2b− d = 0

3d = 1

⇔


2a− 0 = 1

c = 0

2b− 1
3 = 0

d = 1
3

⇔


a = 1

2

c = 0

b = 1
6

d = 1
3

Hence M−1 =

(
1
2

1
6

0 1
3

)

46 Chapter 4. Preconditionning

4.3.4 Computing x∗

So x∗ = M−1x̃∗ =

(
1
2

1
6

0 1
3

)
x̃∗

or
(
x∗1
x∗2

)
=

(
1
2

1
6

0 1
3

)
·
(
x̃∗1
x̃∗2

)
⇔
(
x∗1
x∗2

)
=

(
1
2 x̃
∗
1

+ 1
6 x̃
∗
2

1
3 x̃
∗
2

)

4.3.5 Exercise 12: preconditionning and variable change

4.3.5.1 Part I: preconditioning

Precondition function f(x) = 1
2x1

2 + 25
2 x2

2 + 3x1x2 − 12x1 −
√
πx2 − 6

Indications:
(

1 0

3 4

)
could be useful

Compute Hessian:

Computing the secondary derivatives in mind, we get the following Hessian matrix:

∇2f =

(
∂11 ∂12
∂21 ∂22

)
=

(
1 3

3 25

)
Cholesky Decomposition

Let’s try the Cholesky decomposition with the matrix provided in the indications:

∇2f = L · Lt =

(
1 3

3 25

)
=

(
1 0

3 4

)
·
(

1 3

0 4

)
⇒ OK

Variable Change

We want to express x̃ in function of x and x in function of x̃

x̃ = Lt · x⇔
(
x̃1
x̃2

)
=

(
1 3

0 4

)
·
(
x1
x2

)
=

(
x1 + 3x2

4x2

)
⇔

{
x1 = x̃1 − 3x2 = x̃1 − 3

4 x̃2

x2 = x̃2
4

Compute function f̃

We can now inject these values in the original f(x) function:

f(x1, x2) =
1

2
x1

2 +
25

2
x2

2 + 3x1x2 − 12x1 −
√
πx2 − 6⇔

f̃(x̃1, x̃2) =
1

2
(x̃1 −

3

4
x̃2)

2

+
25

2
(
1

4
x̃2)

2

+ 3(x̃1 −
3

4
x̃2)(

1

4
x̃2)− 12(x̃1 −

3

4
x̃2)−

√
π(

1

4
x̃2)− 6

=
1

2
x̃21 −

3

4
x̃1x̃2 +

9

32
x̃22 +

25

32
x̃22 +

3

4
x̃1x̃2 −

9

16
x̃22 − 12x̃1 + 9x̃2 −

√
π

4
x̃2 − 6

=
1

2
x̃21 +

1

2
x̃22 − 12x̃1 + (9−

√
π

4
)x̃2 − 6

4.3. Practice 47

4.3.5.2 Part II: check condition number

Condition number of f(x)

The condition number of function f(x) is the condition number of its Hessian matrix ∇2f , i.e.
the ration between its highest eigenvalue and its smallest eigenvalue.

From the Hessian

∇2f =

(
∂11 ∂12
∂21 ∂22

)
=

(
1 3

3 25

)

According to 3.4.1, we need to resolve the characteristic polynomial of A :
PA(λ) = λ2 − λ · trace(a) + |A|.

With:

• |A| = det(A) = a11a22 − a12a21 = 25− 9 = 16

• trace(A) = a11 + a22 = 1 + 25 = 26

Hence PA(λ) = 1λ2 − 26λ+ 16, using Viet with a = 1, b = −26, c = 16:

λ1,2 =
−b±

√
b2 − 4ac

2a
=

26±
√

676 + 64

2
=

26± 24.74

2
=

{
25.37

0.63

The condition number is thus cond(f) = max(λ1,λ2)
min(λ1,λ2)

= 25.37
0.63 = 40.22

Condition number of f̃(x̃)

We first need to compute the Hessian of function f̃(x̃) :

∇2f̃ ==

(
∂11 ∂12
∂21 ∂22

)
=

(
1 0

0 1

)

There is not need to go any further as the Hessian of f̃(x̃) is a diagonal matrix. In diagonal
matrices, the eigenvalues are readable on the diagonal.
Here the values of λ1,2 = 1 imply a condition number of 1 which is optimal.

4.3.5.3 Part III: countour curves

What can you say about the countour curves of the preconditionned f̃(x̃) function ?

The condition number being one, the countour curves are perfect concentric circles and a
naive descent algorithm (see further chapters) would converge to the optimal solution in one
single iteration.

CHAPTER 5

Stopping criterion / Optimality
condition

Contents
5.1 Introduction . 49

5.1.1 1-dimension . 49

5.1.2 2-dimensions or more . 50

5.2 Optimality condition . 50

5.2.1 Theorem: necessary condition . 50

5.2.2 Theorem: sufficient condition . 51

Before looking in the next chapters on algorithms aimed at identifying solutions to an optimi-
sation problem, we need to be able to decide whether a given point is optimal or not. This ability
relies on checking optimality conditions

Optimality conditions play three essential roles in the development of algorithms:

• They provide a theoretical analysis of the problem
• They inspire directly the ideas used to develop algorithms
• More importantly, they provide a criteria for the halt of the iterative algorithm

5.1 Introduction

5.1.1 1-dimension

In 1D, the optimility condition verification is quite easy.
The lowest point on the curve is the place where the
derivative (i.e. the slope) is null (0).

x∗ = argmin f ⇔ f ′(x∗) = 0

50 Chapter 5. Stopping criterion / Optimality condition

5.1.2 2-dimensions or more

In 2D, unfortunately, the optimality condition verification is not as easy as in 1D.

Reminder: When we use a derivative in 1D, we most offten use the gradient vector for the same
purpose when facing more dimensions.

Hence, we would be tempted to use the same principle than in 1D, and limit ourselves to check
that the gradient vector is the null vector as an optimality condition.
This, however doesn’t work:

5.1.2.1 Counter-example

The function f(x1, x2) = x1
2 − x22 represents a

mountain pass or a saddle.

Let’s have a closer look at point x = (0, 0).

First we need the derivatives:

∂1 = 2x1 ∂11 = 2

∂2 = 2x2 ∂22 = −2

Hence, at point x = (0, 0), the gradient

∇f(x1, f2) =

(
2x1
2x2

)
=

(
2 · 0
2 · 0

)
=

(
0

0

)
However, as one can sees, it is obviously not a
minimum nor a maximum.

Conclusion: the technique of checking only the derivative (or here the gradient) doesn’t work
in higher dimension

The theorem we will be seing in the next section states that a minimum (or maximum) has a

positive-definite Hessian matrix. The hessian at point x = (0, 0) is ∇2f(x1, x2) =

(
2 0

0 −2

)
which has 2 and −2 as eigenvalues (diagonal values on diagonal matrix) which are not all strictly
positives and hence the hessian ∇2f(x1, x2) is not positive-definite.

5.2 Optimality condition

5.2.1 Theorem: necessary condition

Let f : Rn → R be a function in C2.

x∗is a local minimum of f⇒

{
∇f(x∗) = 0

∇2f(x∗)is positive-semidefinite

5.2. Optimality condition 51

One should not that this condition is necessary but not sufficient. The reciprocity is not
true !

5.2.2 Theorem: sufficient condition

Let f : Rn → R be a function in C2.

∇f(x∗) = 0

∇2f(x∗)is positive-definite

}
⇒ x∗is a local minimum of f

Reminder: ∇2f(x) is positive-definite when each and every eigenvalue are strictly positive.

CHAPTER 6

Differential Optimisation

Contents
6.1 Introduction . 53

6.2 Principle . 54

6.2.1 Descent method . 55

6.2.2 Local algorithms . 55

6.3 Steepest slope method . 55

6.3.1 Iteration . 56

6.3.2 The step α . 56

6.3.3 Recall on parabolas . 56

6.3.4 Example . 57

6.4 Limitations of the steepest slope method . 58

6.5 Estimating the ideal step α . 58

6.5.1 The parabola algorithm . 59

6.6 Stop condition = optimality condition . 60

6.7 Algorithm for the steepest descent . 60

6.7.1 Performance Optimizations . 61

6.8 Practice . 61

6.8.1 Exercise 13 : steepest slope descent . 61

6.8.2 Exercise 14 : interpolating the step length . 63

6.8.3 Compute first iteration . 65

6.8.4 What if we keep going on ? . 65

6.1 Introduction

Let’s first think of an idea enabling us to find a minima on a surface.

Idea for an optimisation algorithm

Let f : Rn → R be a C1 function for whom we are looking for the optimum without constraints.

54 Chapter 6. Differential Optimisation

Idea: Look for the direction where the slope is
the steepest descend ⇒ follow the anti-gradient
direction.

A naive algorithm could be :

Follow the anti-gradient direction until we start
to rise. At this exact location, recompute the
anti-gradient and start all over again.

→ which gives us a simple algorithm, yet very
inneficient.

The intuition that comes immediately consists in following the steepest slope direction, given
by the anti-gradient. This actually works but is desperately slow, especially for ill-conditioned
functions.

Note

One should note that whenever the countour curves are perfect concentric circles, the
naive algorithm finds the optimum in 1 single iteration.
Hence the interest we have in good conditionned functions, as we have seen in chapter 4.

6.2 Principle

As we are looking for going down, we will attempt to generate a series of iterations (xk)k such
that

f(xk+1) ≤ f(xk) k = 1, 2, ...

This is an iterative approach. We start with x0, then the algorithm provides x1, x2, etc. that
converge towards x∗ = argmin / argmax f(x).

Each iteration should find a descending direction, i.e. a direction d such that

∂df(x) = dt∇f(xk) < 0

Reminder: dt∇f(xk) < 0 is a formula giving the directional derivative ∂df(x) 1. Whenever
moving in a direction d implies a descent, the directional derivative in that direction is < 0.

We will focus within this document on minimization problems. One should not however
that this is absolutely not a restriction since min f(x) = −max − f(x) and argmin f(x) =

argmax f(x).

1Oen way to compute the directional derivative is actally to compute the scalar (or matricial) product between the
gradient vector and the direction vector

6.3. Steepest slope method 55

6.2.1 Descent method

Such type of method is called descent method. It consists in a series of iterations based on
three steps:

(E1) Find a direction dk = dk(xk) such that dkt∇f(xk) < 0

(E2) Find a step αk = αk(xk) such that f(xk+1) = f(xk + αkdk) < f(xk)

(E3) Compute xk+1 = xk + αk(xk)dk(xk)︸ ︷︷ ︸
αk · dk → follow direction dk with a ponderation αk

Note: the alpha parameter answers the question "how big should be each step in an iteration ?".
(Later in this document, for the sake of a shorted notation, αk(xk) might be simply denoted αk)

6.2.2 Local algorithms

This method is called a local method. The starting point x0 plays an essential role in order to
ensure a quick convergence towards the searched minimum value (maybe local).

We will never attempt to search a starting point x0 by ourselves. This is a complicated matter
which is usually left to the business to decide. And this is why:

point, we can only a find a local minimum.
On the other hand, of we choose 2) as the start point, we can find the global minimum.

These algorithms are called local algorithms. They rely heavily on a clever choice for the start
point.

6.3 Steepest slope method

The very first idea that comes in mind when attempting to find a concrete descent method is to
follow the direction of the steepest slope, i.e. the opposite direction of the gradient vector,
the anti-gradient.

56 Chapter 6. Differential Optimisation

6.3.1 Iteration

This gives us the following iteration in the above method:

xk+1 = xk − αk(xk)∇f(xk)

6.3.2 The step α

The α step is dynamic, i.e. it is recomputed (and will likely change) at each iteration, hence the
notation αk(xk). One should not that this value is not straightforward to compute.

In the dk = −∇f(xk) direction, should we always follow
that direction, we are facing a 1D (2D) curve. This
curve has a minimal value and a function h(x). It is
represented in dark blue on the schema on the left

We want an αk that makes us stop right at the lowest
possible point in the dk direction, which is the one that
diminish the most the function h(x). The function h(x) is
defined as h(α) = f(xk + αkdk(xk)).

αk = arg min
α>0,α∈R

h(α) = arg min
α>0,α∈R

f(xk + αk(xk)dk(xk))

= arg min
α>0,α∈R

f(xk−αk(xk)∇f(xk))

Finding αk is a new optimisation problem that we hope might be solved analyticaly. One
should note that this new optimisation problem is unidimensional.
This issue is further discussed in section 6.5.

6.3.3 Recall on parabolas

At first, let’s assume h(α) is a parabola, i.e. a second-degree function. (One should note that
this is rarely the case in practice).

Hence h(α) = aα2 + bα+ c = a(α− α1)(α− α2)

1. Hence arg min(α) = α1+α2
2

2. Another option consists in using the derivative.
The derivative h′(α) = 2aα+ b

In argmin, h′(arg min) = 0⇔ arg min = − b
2a

6.3. Steepest slope method 57

6.3.4 Example

Let f(x) be

f(x1, x2)) =
1

2
x1

2 +
9

2
x2

2

It’s steepest slope is

dk(xk) = −∇f(xk) = −
(

(xk)1
9(xk)2

)
=

(
z1
z2

)

In order to find the length of the step αk, we need to solve the 1D optimisation problem:

αk = arg min
α>0

h(α) = arg min
α>0

f(xk − α∇f(xk))

The variable of this optimisation problem is the scalar α ∈ R and h(α) is the undimensional
function:

h(α) = f(xk − α∇f(xk))

=
1

2
x1

2 +
9

2
x2

2 using z1 and z2

=
1

2
((xk)1 − α(xk)1)

2 +
9

2
((xk)2 − 9α(xk)2)

2

which is a second degree polynomial, hence a parabola. Finding its vertex is easy (using x

instead of xk for simplyfing the notation):

h(α) =
1

2
(x1 − αx1)2 +

9

2
(x2 − 9αx2)

2

=
1

2
(x1

2 + (αx1)
2 − 2αx1

2) +
9

2
(x1

2 + (9αx2)
2 − 2 · 9αx22)

=
x1

2

2
+ x1

2α2 − x12α+
9

2
x2

2 +
729

2
x2

2α 2− 81x2
2α

= (x1
2 +

729

2
x2

2)︸ ︷︷ ︸α2−(x1
2 + 81x2

2)︸ ︷︷ ︸α+ (
x1

2

2
+

9

2
x2

2)︸ ︷︷ ︸
= a b c

Hence arg minh(α) becomes easy to find:

αk(xk) = arg min
α>0

h(α)= − b

2a
=

(xk)1
2 + 81(xk)2 2

(xk)1
2 + 729(xk)2

2 > 0

In conclusion, the iterations become:

xk+1 = xk − αk(xk)∇f(xk)

= xk −
(xk)1

2 + 81(xk)2 2

(xk)1
2 + 729(xk)2

2

(
(xk)1
9(xk)2

)

58 Chapter 6. Differential Optimisation

6.4 Limitations of the steepest slope method

In theory, the method seems interesting. In practive, however, it often implies teh necessity of an
overwhelimg amount of iterations before it reached convergence, specifically when the function
is ill-conditionned.

In this case, the series of xk zigzag a lot and
the convergence is very slow.

See for instance graphic on the left.

The slowness of the method is here due to
the ill-conditionning of f .
With a good conditionning, the convergence
would happen within one single iteration.
See exercise TODO

6.5 Estimating the ideal step α

Principle: one cuts the surface following the plan in black below in order to find the curve in red.
That curve is called h(α) and is a specific set of points of the surface, i.e. it can be expressed
from the surface.

The search of the ideal step αk resumes to the
resolution of a new 1D minimsation problem:

αk = arg min
α>0,α∈R

f(xk + αdk)

Let’s say

h(α) = f(xk + αdk)

is the unidimensionnal function to be minimized.
Unfortunately h(x) does almost never posess an
explicite analytic solution, or even an easy to com-
pute solution. In practice it is never a parabola.

What we do in this case is that we build an approximation of h(x) using a parabola. The
minimum of the parabola is analyticaly computable and might well be a quite good estimation for
our step αk.

6.5. Estimating the ideal step α 59

6.5.1 The parabola algorithm

The idea is to approximate the h(α) function using a parabola. We know the equation of the
parabola has the form h(α) = aα2 + bα+ c.

In order to estimate the coefficients a, b and c,
we need to know three points representatives of
the parabola. In order to find these 3 unknown
coefficients, we need 3 equations. Building these
3 equations is easy, all we need to do is use the
function well known h(α) function and inject in 3
arbitrary values in it.

Hence we need to take 3 distinct values for the α pa-
rameter: α1, α3 and α3:

• α1 = 0 (always)
• α2 =? → needs to be chosen
• α3 = α2

2 (implied by the choice of α2)

6.5.1.1 Computing the coefficients

We need to compute the coefficients a, b and c of the parabola with the α1, α2 and α3 parameters.
By injecting the αi coefficients in the h(α) = f(xk+αdk) function, we get a 3 unknown variables,
3 equations system:

aα1 + bα1 + c = h(α1)

aα2 + bα2 + c = h(α2)

aα3 + bα3 + c = h(α3)

⇒


c = h(0)

aα2 + bα2 + h(0) = h(α2)

aα3 + bα3 + h(0) = h(α3)

Hence we’re left with a 2 unknown variables, 2 equations system to be solved.

Once this system is solved, we have the a, b and c coefficients and we can compute the α

parameter with α = arg minh(α) = − b
2a

6.5.1.2 Choosing the α2 value

α1 is always 0. α3 is computed from α2. α2 needs to be chosen. We want ideally to have points
as close as possible to argmin in order to end up with a good approximation of the interesting
range.

60 Chapter 6. Differential Optimisation

So here’s an algorithm for choosing α2:

1. start with α2 = 1

2. while h(α2) > h(α1) do
α2 = α2/2

6.6 Stop condition = optimality condition

The whole idea is to stop when we reach a point in the algorithm where we are not making very
much progress anymore after each new iteration, i.e when xk+1 is close to xk.
The problem here is that we need to define "close to". We use a value provided by the business
for this, which is ε.

At first, we might be tempted to use as stopping condition ||xk+1 − xk|| < εx. But this suffers
from a varying unit which makes it hardly usable.

Hence we’ll use
||xk+1 − xk||
||xk||

< εx in order to get rid of varying unit issues (i.e. get an

absolute order).

6.7 Algorithm for the steepest descent

Inputs :

• (E1) A function f : R2 → R ∈ C1, for which we are searching the zero
• (E2) A first approximation of the solution x0 ∈ Rn

• (E3) The asked precision εx ≥ 0, εf ≥ 0

Initializations :

• (O1) k = 0

Iterations :

• (I1) Compute dk = ∇f(xk)

• (I2) Compute ak = arg min
α>0,α∈R

f(xk + αdk)

(For instance by using a 2nd degree interpolation (parabola algorithm))
• (I3) Compute xk+1 = xk + αkdk
• (I4) k = k + 1

6.8. Practice 61

Stop :

• (A1) ||xk+1−xk||
||xk|| < εx

• (A2) |f(xk+1)| ≤ εf

Output :

• (O1) x∗ = xk+1 is an approximation of the zero of f

The convergence is guaranteed but slow !

6.7.1 Performance Optimizations

• (O1) There is a generic version of the steepest slope method which includes a generic
pre-conditionning, with different variations.
• (O2) The search of the optimal step length can be very costy. Several methods exist to

speed up the search of the ideal step length (See Insearch or linear search).

6.8 Practice

6.8.1 Exercise 13 : steepest slope descent

Precondition f(x) defined as:

f(x1, x2) =
1

2
x1

2 +
9

2
x2

2

And show that the steepest slope descent algorithm coverge within one single iteration.
Indication: play the algorithm here, no subtle deduction !

The start point is x0 = (9 1)t

6.8.1.1 Preconditionning

Compute derivatives

∂11 = 1 ∂12 = ∂21 = 0 ∂22 = 9

Hessian and Cholesky

Hessian ∇2f(x) =

(
1 0

0 9

)
= LLt =

(
1 0

0 3

)(
1 0

0 3

)

Preconditionning

62 Chapter 6. Differential Optimisation

Variable change :(
x̃1
x̃2

)
=

(
1 0

0 3

)(
x1
x2

) (
x1
x2

)
=

(
1 0

0 1
3

)(
x̃1
x̃2

)

Compute function f̃

f(x1, x2) =
1

2
x1

2 +
9

2
x2

2 and

{
x1 = x̃1

x2 = 1
3 x̃2

⇒ f̃(x̃1, x̃2) =
1

2
x̃ 2
1 +

9

2
(
1

3
x̃ 2
2)

⇒ f̃(x̃1, x̃2) =
1

2
x̃ 2
1 +

1

2
x̃ 2
2

Gradient and Hessian of f̃

Gradient ∇f̃(x) =

(
x̃1
x̃2

)
= x̃ Hessian ∇2f̃(x) =

(
1 0

0 1

)

6.8.1.2 Steepest slope algorithm

We can compute the formula for the iterations knowing the gradient of f̃(x̃):

x̃k+1 = x̃k + αkdk(x̃k)

= x̃k − αkx̃k with dk(x̃k) = −∇f̃(xk) = −x̃k=
(

(x̃1)k
(x̃2)k

)

The αk parameter can be analytically computed in this case, i.e. there is no need to perform
an interpollation.
(Note: recall αk is dependent of xk, it is normally noted αk(xk). Hence the result of the compu-
tation should be a function of xk, or a constant in case the alphak is alwayys the same whatever
the current xk position on the surface. This later situation usually indicated a completion of the
algorithm in one step)

αk = arg min
α>0,α∈R

h(α) = arg min
α>0,α∈R

f̃(x̃k − αx̃k)

Let’s resolve f̃(x̃k − αx̃k):

f̃(x̃k − αx̃k) =
1

2
[(x̃1)k − α(x̃1)k]

2 +
1

2
[(x̃2)k − α(x̃2)k]

2 with f̃(x̃) =
1

2
x̃ 2
1 +

1

2
x̃ 2
2

=
1

2
[(x̃1)k

2 − 2(x̃1)k
2α+ α2(x̃1)k

2] +
1

2
[(x̃2)k

2 − 2(x̃2)k
2α+ α2(x̃2)k

2]

=
1

2
[(x̃1)k

2 + (x̃2)k
2]︸ ︷︷ ︸ ·α2−[(x̃1)k

2 + (x̃1)k
2]︸ ︷︷ ︸ ·α+

1

2
[(x̃1)k

2 + (x̃1)k
2]︸ ︷︷ ︸

= a b c

6.8. Practice 63

Hence arg minh(α) becomes easy to find:

αk(xk) = arg min
α>0

h(α)= − b

2a

=
[(x̃1)k

2 + (x̃1)k
2]

2 · 12 [(x̃1)k
2 + (x̃2)k

2]

=
[(x̃1)k

2 + (x̃1)k
2]

[(x̃1)k
2 + (x̃1)k

2]

= 1

Running the algorithm

Now we have the formula for αk(xk) - here simply the constant 1 - we can now run the algorithm:

x̃k+1 = x̃k + αk(x̃k) dk(x̃k)⇒
x̃k+1 = x̃k − αkx̃k ⇒(
x̃1
x̃2

)
1

=

(
x̃1
x̃2

)
0

− α
(
x̃1
x̃2

)
0

=

(
9

1

)
− 1

(
9

1

)
=

(
0

0

)
Getting back in the original base(

x1
x2

)
=

(
1 0

0 1
3

)(
x̃1
x̃2

)
=

(
1 0

0 1
3

)(
0

0

)
=

(
0

0

)
Result

We can check that the point (0 0)t is really the minimum of original the parabloid.

Remarks

• The result of the f(x1, x2) function cannot be negative, hence f(0, 0) = 0 cleary is a
minimum.
• The Hessian of the preconditionned function f̃ is strictly positive-definite at the origine (as

in every other point) which confirms of the the optimality conditions.

6.8.2 Exercise 14 : interpolating the step length

Let function f be defined as:

f(x1, x2) = (x1 − 2)4 + (x1 − 2x2)
2

Without any preconditionning, apply one iteration of the steepest slope descent method. The
length of the step should be computed using the parabola interpolation method.
Use x0 = (0 0)t as start point.

64 Chapter 6. Differential Optimisation

6.8.2.1 First iteration

Compute the Gradient

∇f(x) =

(
∂1f

∂2f

)
=

(
4(x1 − 2)3 + 2(x1 − 2x2)

−4(x1 − 2x2)

)

Define the first iteration, x1

x1 = x0 − α0∇f(x0)with α0 = arg min f(x0 − α∇f(x0))︸ ︷︷ ︸
h(α)

Compute α0, i.e. αk(xk) for xk = x0 = (0 0)t

Here we use a different approach. There no use to perform the full computation for h(α)

since we only need to compute the parabola interpolation for the first iteration. Hence we’ll
directly inject the x0 = (0 0)t in the formula instead of keeping xk

Resolve Gradient

∇f(x0) = ∇f((0 0)t) =

(
4(0− 2)3 + 2(0− 2 · 0)

−4(0− 2 · 0)

)
=

(
−32

0

)

Compute h(α)

h(α = = f(x0 − α∇f(x0))

= f

((
0

0

)
+ α

(
32

0

))
= f

((
32α

0

))
= (32α− 2)4 + (32α)2

6.8.2.2 Parabola interpolation

Let’s say (α1 = 0, α2 =?, α3 = α2/2) and search for α2 as long as h(α2) > h(α1) , starting with
α2 = 1.
We need h(α1 = 0) = (−2)4 = 16.

h(α2 = 1) = (32− 2)4 + (32)2 = 811024 > h(α1 = 0) = 16

h(α2 =
1

2
) = (16− 2)4 + (16)2 = 38672 > h(α1 = 0) = 16

...

h(α2 =
1

16
) = (2− 2)4 + (2)2 = 4 ≤ h(α1 = 0) = 16

6.8. Practice 65

Eventually the triple (α1 = 0, α2 = 1
16 , α3 = 1

32) defines the parabola and we get the following
system: 

aα1
2 + bα1 + c = h(α1)

aα2
2 + bα2 + c = h(α2)

aα3
2 + bα3 + c = h(α3)

⇒


c = 16

a(1
16)

2
+ b 1

16 + 16 = 4 ·162

a(1
32)

2
+ b 1

32 + 16 = 2 ·322

⇒


c = 16

a+ 16b+ 163 = 4 · 162

a+ 32b+ 16 · 322 = 2 · 322

⇒


c = 16

a+ 16b = (4− 16) · 162

a+ 32b = (2− 16) · 322

⇒ ...⇒


c = 16

a = 8192

b = −704

Interpolate α0

Our parabol hence is p(α) = 8192α2 − 704α+ 16.

We want α0 = arg min p(α) = − b
2a = 704

2·8192 = 11
256

6.8.3 Compute first iteration

Finally:

x1 = x0 − α0∇f(x0) =

(
0

0

)
− 11

256

(
−32

0

)
=

(
11
8

0

)
=

(
1.375

0

)

6.8.4 What if we keep going on ?

CHAPTER 7

Solving nonlinear systems - Newton

Contents
7.1 Introduction . 67

7.1.1 Principle . 68
7.2 Newton in 1D . 68

7.2.1 Graphical approach - 1D Newton . 68
7.2.2 Analytical approach - 1D Newton . 69
7.2.3 Divergence - an example . 71

7.3 Newton in nD . 71
7.3.1 Purpose . 71
7.3.2 Geometrical approach - nD Newton . 72
7.3.3 Analytical approach - nD Newton . 73
7.3.4 Newton’s equation . 73

7.4 The Newton algorithm . 73
7.5 Practice . 74

7.5.1 Exercise 15-a : from a system to the zero . 74
7.5.2 Exercise 17 : the Newton algorithm . 75

7.1 Introduction

We have seen in the previous chapters the necessary optimality conditions that enables on
to find the ciritcal points which are good candidates to solve an optimisation problem. That
necessary condition consists in finding the points making the gradient null (=0). One
should recall that in 1D we needed to make the derivative null. One should recall as well that
this was a necessary but not a sufficient condition.

arg min f(x) =???→ f ′(x) = 0(1D)⇒ good candidates

Actually, making the gradient null consists in finding the zeros of the gradient function. In
n dimensions, this means solving a system of n non-linear equations with n unknown variables
(because the gradient has a different equation for each dimension).

This is a question of equivalent problems. Finding the good candidates for argmin resolves
to finding the zeros of the gradient function, i.e. solving the non-linear system of equations of
the gradient. We will use the Newton algorithm to find these points and then build a method -

68 Chapter 7. Solving nonlinear systems - Newton

called the Newton method for solving optimisation problem. The Newton method is presented
in chapter 9.

This chapter focuses on presenting the Newton algorithm for solving non-linear equa-
tions systems

The Newton algorithm plays an essential role in the resolution of non-linear systems, and,
by extension, in the field of non-linear optimisation. It enables to quickly find the neaarest point
where the gradient is nullified (local optimum only).

We will study the Newton algorithm here as a way to sole non-linear equations and systems
while the chapter 9 presents an optimisation method based on the Newton algorithm.

7.1.1 Principle

Recall x∗ = arg min f ⇔

{
∇f(x∗) = 0 necessary condition ∗
∇2f(x∗) is positive definite sufficient condition

∗ → use the Newton algorithm to get candidates and check them with the Hessian.

(This is furtherly developed in 9)

7.2 Newton in 1D

In 1D, we focus on a function of the form f : R→ R ∈ C1 with one single variable.
The values of x which nullifies f (i.e. make f return 0) are called zeros or roots of f .

7.2.1 Graphical approach - 1D Newton

7.2.1.1 Principle

The Newton algorithm consists in making a
series of iterations (xk)k converging towards
the root x∗ of f .
The series is defined using the geometrical
approach illustrated on the graph on the
right.

We take the tangent (derivative) in x0 and
considere the point x1 is the point where the
tangent crosses the x axe.

The tangent at point x0 forms a rectangle triangle with the two axes. The slope of the longest
side is given

• either the derivative f ′(x0)

7.2. Newton in 1D 69

• or the pythagorean way f(x0)
x0−x1

7.2.1.2 The iterations

What we have seen for x0 and x1 above can
be generalized for every iteration. Hence,
the way an iteration can be defined is
straightforward:

slope =
"rise"

"advance"
=

f(xk)

xk − xk+1
= f ′(xk)

⇔ xk+1 = xk −
f(xk)

f ′(xk)

The iterative algorithm becomes:{
x0 needs to be close from x∗
xk+1 = xk − f(xk)

f ′(xk)

Again, the algorithm is highly sensitive to a very good choice of the starting point x0. If the
chosen x0 is to far from the solution, the algorithm migth even diverge.
On the other hand, if Newton converges, it is very fast and efficient. It’s its great strength!

7.2.1.3 Stopping criterions

Two distinct stopping criterions are required, one on x and one on y = f(x)

on x, one stops when one doesn’t
progress on x anymore, i.e. when the it-
erations in xk are close enough to each-
others, i.e. when:

|xk − xk+1|
|xk|

≤ εx

on y, one stops when one doesn’t
progress on y anymore, i.e. when the
f(x) is close enough to 0, i.e. when:

|f(xk)| ≤ εx

Note: the ratios for stopping on εx to avoid subscribing to problems with different scales.

7.2.2 Analytical approach - 1D Newton

We have seen the graphical approach in the previous section which already enabled us to build
the iterations. The goal here is to see whether an analytical approach leads us to the same
conclusions... which will turn out to be the case.
The reader might well skip this section is it doesn’t brind anything additional regarding
the way to use the Newton algorithm in 1D.

70 Chapter 7. Solving nonlinear systems - Newton

Globally, the approach is still iterative: we build a series of iterations (xk) converging towards
the searched zero.

But we use a trick here:

The idea is to approximate the function f for which we are searching the zero by a linear
function, and then to solve the problem for the linear function. The zero of the linear function
approximating f en xk gives us the next iteration point xk+1.
The algorithm stops when it doesn’t progress anymore neither on x, nor on y = f(x).

One should note that the more the function is not linear, the worst is the approximation of
it through a linear function, hence the more the algorithm might diverge. It might even more
diverge if the x0 point is not a clever choice.

7.2.2.1 Mathematical reminder

Each and every continued differentiable function can be approximated locally on a point
xk by a polynomial of degree n. That polynomial comes from a n-order Taylor series (in french :
développement limité d’ordre n) of the function f (the bigger the n, the better the approximation):

fxk(x) ∼= f(xk) +

n∑
i=1

f (i)(xk)

i!
(x− xk)i

= f(xk) +
f ′(xk)

1!
(x− xk)1 + ...+

f (n)(xk)

n!
(x− xk)n

The first-order Taylor series (in french
développement limité d’ordre 1) of f in xk is:

fxk(x) ∼= f(xk) + f ′(xk)(x− xk)

Let’s call this one the linear model and write
it:

m(f,xk)(x) ∼= f(xk) + f ′(xk)(x− xk)

With this approach, xk+1 is nothing more
than the zero or root of the linear model
m(f,xk)(x), i.e.:

0 = f(xk) + f ′(xk)(x− xk)⇔ x = xk −
f(xk)

f ′(xk)

Hence we end up with exactly the same formula we have built using the geometrical ap-
proach. Happily ,

7.3. Newton in nD 71

7.2.3 Divergence - an example

When the function for which we are
searching the zero is not enough
linear, and when the chosen start
point x0 is a very poor choice, the
Newton algorithm diverges.

The schema on the right illustrates
such a situation with the arctan (x)

function.

7.3 Newton in nD

7.3.1 Purpose

As stated in the previous chapter, the Newton method is essentialy useful for solving equa-
tions, i.e. finding roots or zeros

In nD, we will use the Newton algorithm to solve sytems of equations of several unknown
variables. The algorithm is a generalization of the 1D Newton algorithm to multi-dimensionnal
C2 functions:

f :Rn → Rm

(x1, ..., xn)→ f(x1, ..., xn) =

 f1(x1, ..., xn)

...

fm(x1, ..., xn)



One just needs to recall that the generalization of the derivative in the context of f : Rn → Rm
functions is the Jacobian matrix. See 7.3.1.2.

The Newton algorithm enables one to find a
zero of function f , i.e. to find the solution of
the non-linear system:

(S)


f1(x1, ..., xn) = 0

...

fm(x1, ..., xn) = 0

In order for the system not to be underde-
terminated (too many unknown variables for
not enough equations) or overdeterminated,
we will assume:

n = m

72 Chapter 7. Solving nonlinear systems - Newton

7.3.1.1 The gradient matrix

Let f : Rn → Rm be a C2 function continued and differentiable. The Gradient matrix is defined
as:

∇f(x) =

 ↑
∇f1(x)

↓
...

↑
∇fn(x)

↓

 ∈Mn×m(R)

We can calculate the gradients of each sub-function of the function f . These gradients are
vectors, we can put them in column in the matrix.

7.3.1.2 The jacobian matrix

When one puts the gradient vectors in row instead of in column, one gets the jacobian matrix (in
french : la matrice de Jacobi) :

Jf (x) = ∇f(x)t =

 ← ∇f1(x)t →
...

← ∇fm(x)t →

 ∈Mm×n(R)

The jacobian matrix is the generalization of the derivative for multidimensional models. 1 It
plays an essential role in what we will be seeing next in this chapter.

7.3.2 Geometrical approach - nD Newton

The geometrical approach we have been studying in the 1D model, can easily be generalized to
the nD model.

• For a function f : R → R unidimensional in C1, the geometrical approach led us to the
following relation, which we can write under its generalisable form:

xk+1 = xk −
f(xk)

f ′(xk)
= xk − f ′(xk)

−1
f(xk)

• For a function f : Rn → Rm multidimensional in C2, one only needs to replace f ′(xk)
−1

by the inverse of the jacobian matrix Jf−1(xk), which gives:

xk+1 = xk − Jf−1(xk)f(xk)

In the case where m = n, the jacobian matrix is a squared matrix and hence its inverse
makes sense!

1One should note that the specific case f : Rn → R leads to a jacobian matrix with one single, row, i.e. the
gradient, which - as we have seen in the chapters before - is the generalization of the derivative in this case.

7.4. The Newton algorithm 73

7.3.3 Analytical approach - nD Newton

Again, the goal here is to see whether an analytical approach leads us to the same conclusions...
which will turn out to be the case. This section might well be skipped.

The principle is just the same as in 1D: instead of searching the zero of function f : Rn → Rm,
we search the zero of the linear function which is the closest to the original function, i.e. the linar
function given by the first-order Taylor series.
For a multi-dimensionnal function, the linear model is:

m(f,xk) = f(xk) + Jf (xk)(x− xk)

which is simply the linear model of an unidimensionnal function where the derivative has
been replaced by the jacobian function.
The zero of this model is given by the equation below from which we extract the iterations:

0 = f(xk) + Jf (xk)(x− xk)

⇔ xk+1 = xk − Jf−1(xk)f(xk)

which is the same that what we have obtained with the graphical approach. Happily ,

7.3.4 Newton’s equation

The inverse of a matrix can be very costy to compute, hence one sometimes write the iteration
of the Newton algorithm the way below.

This is called the Newton equation

xk+1 = xk + dk where Jf (xk)dk = −f(xk)

There are numerical analysis technics that helps find a solution dk to this problem without
the need to invert the jacobian matrix.

7.4 The Newton algorithm

Inputs :

• (E1) A function f : Rn → Rm ∈ C2 for which we search the zero
• (E2) The jacobian matrix Jf (xk)

• (E3) A first approximation of the solution x0 ∈ Rn

• (E4) The asked precison εx ≥ 0, εf ≥ 0

Initializations :

• (O1) k = 0

74 Chapter 7. Solving nonlinear systems - Newton

Iterations :

• (I1) Compute dk = dk(xk), the solution of Jf (xk)dk = −f(xk)

• (I2) xk + 1 = xk + dk
• (I3) k = k + 1

Stop :

• (A1) ||xk+1−xk||
||xk|| < εx

• (A2) |f(xk+1)| ≤ εf

Output :

• (O1) x∗ = xk+1 is an approximation of the zero of f

The convergence is not guaranteed whenever the function is not enough linear or if the initial
solution x0 is too far from the solution. On the other hand, when the algorithm converges, it
converges fast.

7.5 Practice

7.5.1 Exercise 15-a : from a system to the zero

(This exercise has a sequel 15-b under 8.6.1 in the next chapter)

Modelize under an appropriate form the following problem in order to be able to resolve it
with the Newton algorithm.

(S)

{
x1

2 − x1x2 + x2
2 = 21

x1
2 + 2x1x2 − 8x2

2 = 0

Note: this system produces 4 solutions: (−2
√

7 −
√

7)
t, (2
√

7
√

7)
t, (−4 1)t and (4 − 1)t

In addition, mention the functions (gradient, hessian, etc.) that need to be computed in order
to achieve its resolution.

7.5.1.1 Model

This system can be resolved using the Newton algorithm by searching for the zero of the func-
tion:

f : R2 → R2

f(x1, x2) =

(
f1(x1, x2)

f2(x1, x2)

)
=

(
x1

2 − x1x2 + x2
2−21

x1
2 + 2x1x2 − 8x2

2

)

7.5. Practice 75

7.5.1.2 Required functions

Newton requires the calculation of the jacobian matrix.

Let’s first compute the individual gradients for each sub-function:

∇f1(x1, x2) =

(
∂1f1
∂2f1

)
=

(
2x1 − x2
−x1 + 2x2

)
∇f2(x1, x2) =

(
∂1f2
∂2f2

)
=

(
2x1 + 2x2
2x1 − 16x2

)
which we inject in the gradient matrix :

∇f(x1, x2) =

 ↑ ↑
∇f1 ∇f2
↓ ↓

 =

(
2x1 − x2 2x1 + 2x2
−x1 + 2x2 2x1 − 16x2

)

which gives the jacobian matrix with its transpose:

Jf (x1, x2) = ∇f t(x1, x2) =

(
← ∇f1 →
← ∇f2 →

)
=

(
2x1 − x2 −x1 + 2x2 − x1 + 2x2
2x1 + 2x2 2x1 − 16x2

)

7.5.2 Exercise 17 : the Newton algorithm

Let (S) be the following system of equations:

(S)

{
(x1 + 1)2 + x2

2 = 2

ex1 + x2
3 = 2

Solve it using the Newton algorithm, by using the start point x0 = (1 1)t. Only the first
iteration should be executed

7.5.2.1 Model

Let’s use Newton to find a zero of the function:

f(x1, x2) =

(
(x1 + 1)2 + x2

2 − 2

ex1 + x2
3 − 2

)

7.5.2.2 The jacobian matrix

First, let’s compute the gradient of the sub-functions:

∇f1(x1, x2) =

(
2(x1 + 1)

2x2

)
∇f2(x1, x2) =

(
ex1

3x2
2

)

76 Chapter 7. Solving nonlinear systems - Newton

The jacobian matrix is built by putting these gardient in a row:

Jf (x1, x2) =

(
← ∇f1(x1, x2)t →
← ∇f2(x1, x2)t →

)
=

(
2(x1 + 1) 2x2

ex1 3x2
2

)

7.5.2.3 First iteration

Let x0 = (1 1)t the start point, then

x1 = x0 + d0

where d0 ∈ R is the solution of the system:

Jf (x0)d0 = −f(x0)⇒ d0 = −Jf (x0)f(x0)

7.5.2.4 Resolving the first iteration

We have:

Jf (x0) = Jf (1, 1) =

(
2(x1 + 1) 2x2

ex1 3x2
2

)
=

(
4 2

e 3

)
f(x0) = f(1, 1) =

(
(x1 + 1)2 + x2

2 − 2

ex1 + x2
3 − 1

)
=

(
3

e− 1

)
The jacobi matrix being a 2× 2 matrix, we can easily afford the cost of inverting it:

Jf
−1(x0) =

(
4 2

e 3

)−1
with A =

(
a b

c d

)
⇔ A −1 =

1

det(A)

(
d −b
−c a

)
and det(A) = |A| = ad− bc

= 12− 2e

=
1

12− 2e

(
3 −2

−e 4

)
We can now compute d0

d0 = −Jf (x0)f(x0)

= − 1

12− 2e

(
3 −2

−e 4

)(
3

e− 1

)
= − 1

12− 2e

(
9 + 2− 2e

e− 4

)
The first iteration of Newton is:

x1 = x0 + d0

=

(
1

1

)
− 1

12− 2e

(
9 + 2− 2e

e− 4

)
=

(
0.1523592

1.195282

)

CHAPTER 8

Solving nonlinear systems -
Quasi-Newton methods

Contents
8.1 Introduction . 77

8.1.1 Principle . 78

8.2 The string method . 78

8.3 Finite difference method . 78

8.3.1 Idea : the secant principle . 79

8.4 The Broyden method . 79

8.4.1 The linear estimated model . 79

8.4.2 The Quasi-Newton equation . 80

8.4.3 Multi-dimensional secant . 80

8.4.4 Algorithm principle . 80

8.4.5 Broyden . 81

8.5 Algorithm . 81

8.6 Practice . 82

8.6.1 Exercise 15-b : from a system to the zero . 82

8.6.2 Exercice 16 : Zero Newton unidimensional 82

8.1 Introduction

In the Newton algorithm, it is required to compute either the derivative (unidimensional function)
or the Jacobi matrix (multidimensional function) of the function, which can very well be pretty
costy in terms of computation time.
The Quasi-Newton methods are all attempts to address this issue with the same idea: replace
the tangent by an approximative linear model expected to be easier to compute.

The three methods we will be seeing try to estimate the slope of the tangent, and replace it
by a line expected to be close enough. For instance, the approximative linear model can be:

• A string
• An estimate of the derivative
• A secant

78 Chapter 8. Solving nonlinear systems - Quasi-Newton methods

The secant method is particularly interesting as it is easily generalizable to multi-
dimensionnal functions and, enhancent with the Broyden technic, it is one of the most powerful
algorithm discovered so far.

8.1.1 Principle

The Quasi-Newton methods all try to address the following issue in the algorithm iterations:

xk+1 = xk −
f(x)

??? ← put something easy here

8.2 The string method

The string method is base on the geomet-
rical principle illustrated on the schema on
the right. It consists in derivating the target
f(x) function only once on x0 and reusing
every time time the same derivative.

The iterations become:

1D xk+1 = xk − f ′(x0)
−1
f(xk)

nD xk+1 = xk − Jf−1(x0)f(xk)

• Advantage: less calculations
• Drawback: more iterations

8.3 Finite difference method

(In french: méthode des différences finies)

The String method eliminates the calculation of the derivative at each iteration, yet it is still
required to compute the derivative at the start point x0 which implies an analytic knowledge of
the derivative.
With the Finite difference method, one computes an estimate of the derivative at each iteration,
which supress the need to explicitly compute the derivative itself. This estimation is undoubtly
better that with the string method

8.4. The Broyden method 79

8.3.1 Idea : the secant principle

As the Newton algorithm provides as series
of iterations (xk) and f(xk), an estimation of
the derivative could be

est(f ′(x)) =
f(xk)− f(xk+1

xk − xk+1

Geometricaly, this resolves to take as esti-
mation of the derivative in xk+1 the secant
connecting the two previous iterations
(xk, f(xk)) and (xk+1, f(xk+1)).

With Quasi-Newton-Secant, the iterations
becomes:

xk+1 = xk −
f(xk)

f(xk−1)−f(xk)
xk−1−xk

Note: one should note that this required to
have two start pointx0 and x1. Both need to
be sufficiently close to x∗. Sometimes, one
uses Newton to get x1 from x0.

8.4 The Broyden method

The Broyden method consists in formalizing the idea of the secant presented above in the
context of the Newton algorithm to multidimensionnal functions of the form f : Rn → Rm.

8.4.1 The linear estimated model

The method of Newton is based on the approximation of the local f function for which we are
searching a zero by the closest possible linear function.
That linear function is obtained by the first order Taylor series (french : développement limité
d’ordre 1) of f which we call in this context the linear model of f.

• For a unidimensional function, the model is a line:

m(f,xk) = f(xk) + f ′(xk)(x− xk)

• For a multidimensional function, the model is an hyper-plan:

m(f,xk) = f(xk) + Jf (xk)(x− xk)

80 Chapter 8. Solving nonlinear systems - Quasi-Newton methods

• The quasi-Newton methods use an estimated model noted:

m̂(f,xk) = f(xk) +An×n(xk)(x− xk)

where An×n is a

• a squared matrix in case f is multidimensional
• a scalar in case f is unidimensional

When A is replaced by the Jacobi matrix (multidimensional world) or the derivative (unidi-
mensional) world, one gets the exact model

8.4.2 The Quasi-Newton equation

The Newton algorithm, just as the Quasi-Newton algorithm, searches the zero of the associated
linear model :

f(xk) +An×n(xk)(x− xk) = 0⇔ x = xk −An×n−1(xk)f(xk)

In practice, inverting the An×n(xk), matrix is not very clever, on might rather write:

xk+1 = xk + dk (I) where An×n(xk)dk = −f(xk) (II)

This is called the Quasi-Newton equation. The quality and the efficiency of the convergence
of the quasi-Newton algorithms will depend of the choice of the matrix An×n

8.4.3 Multi-dimensional secant

We have seen that for a n unidimensional function, the secant method proposes to use the slope
of the secant of thje previous iteration as An×n:

An×n(xk) =
f(xk)− f(xk−1)

xk − xk−1

The problem in a multidimensional world is that dividing by the (xk − xk−1) makes no sense!
We prefere hence write:

An×n(xk)(xk − xk−1) = f(xk)− f(xk−1) (III)

8.4.4 Algorithm principle

Now one has first to resolve the linear system (II) and then to inject the result in in (II) and
resolve this other linear system, and eventually inject the result in (I).
But be careful, the unknown variable which we are resolving in (III) is not dk−1 but the matrix
An×n which posesses n2 unknown values.
As the system only posesses n equations, the system is largely under-determined. Geomet-
rically, thete is an infinite number of hyper-plans going through 2 points.
This is where Broyden kicks in. He proposes a subtle and simple way to compute the An×n
matrix.

8.5. Algorithm 81

8.4.5 Broyden

Chosing amongst the infinity of solutions for the system (III) resolves to defining An×n, i.e.
define the estimated linear model:

m̂(f,xk)(x) = f(xk) +An×n(xk)(x− xk)

The idea propose by Broyden (1965) is to choose amongst this infinity of secant linear mod-
els, the one that is the closest to the model established during the previous iteration. This way
we keep as much as possible what has already been computed.
Broyden accepts a little sacrifice in terms of quality by not searching the very best approcimation
in favor of a model requiering only few calculations. The focus is clearyl put on performances. It
is today one of the most powerful algorithm and is widely used.

8.4.5.1 The Broyden theorem

The linear model estimated in xk is:

Ak = Ak−1 +
(yk−1 −Ak−1dk−1)dtk−1

dtk−1dk−1
∈ GLn(R)

with:

• Ak−1 is the approximated model matrix, i .e the approximation of the derivative, com-
puted during the previous iteration.
By default, A0 is initialized at I.
• yk−1 = f(xk)− f(xk−1)

• dk−1 = xk − xk−1
• GLn(R) the set of invertible squared matrices n× n

8.4.5.2 Conclusion

It is possible to find efficiently a zero of a multidimensionnal function associated to a non-linear
system of n-equations with n unknown values by using the Quasi-Newton secant algorithm
associated to the Broyden secant model. The Broyden secant model is used to approximate the
Jacobian.

8.5 Algorithm

Inputs :

• (E1) A function f : Rn → Rn ∈ C2 for which we search the zero
• (E2) A first approximation of the solution x0 ∈ Rn

82 Chapter 8. Solving nonlinear systems - Quasi-Newton methods

• (E3) A first approximation of Jacobian, i.e a matrix A0 (by default A0 = In)
• (E4) The asked precison εx ≥ 0, εf ≥ 0

Initializations :

• (O1) x1 = x0 −A0
−1f(x0)

• (O2) d0 = x1 − x0
• (O3) y0 = f(x1)− f(x0)

• (O4) k = 1

Iterations :

• (I1) The Broyden update:

Ak(xk) = Ak−1 +
(yk−1 −Ak−1dk−1)dtk−1

dtk−1dk−1

• (I2) Compute dk = dk(xk) the solution of Akdk = −f(xk)

• (I3) xk+1 = xk + dk(xk)

• (I4) yk = f(xk+1)− f(xk)

• (I5) k = k + 1

Stop :

• (A1) ||xk+1−xk||
||xk|| < εx

• (A2) |f(xk+1)| ≤ εf

Output :

• (O1) x∗ = xk+1 is an approximation of the zero of f

The convergence is not guaranteed whenever the function is not enough linear or if the initial
solution x0 is too far from the solution. On the other hand, when the algorithm converges, it
converges very fast.

8.6 Practice

8.6.1 Exercise 15-b : from a system to the zero

(This exercise has a prequel 15-a under 7.5.1 in the previous chapter)

This problem can be resolved with the Quasi-Newton-Secant-Broyden algorithm wich has
the advantage of not using the Jacobian matrix. The latest is hence approximated and it is not
required to compute its analytical form which can well be quite complicated.

8.6.2 Exercice 16 : Zero Newton unidimensional

Solve the problem given in the followin parts using:

8.6. Practice 83

• Newton
• String
• Secant

At each step, one should leave the trace of the result of the calculations in an array of the
form:

k xk dk f(xk) f ′(xk) f(xk)/f
′(xk)

0
1
2
3

8.6.2.1 Part 1

Solve the equation x2 − 2 = 0. Use x0 = 2 as start point and 10 −3 as stop criteria.

Resolution with Newton

Using :

• dk = dk(xk), the solution of Jf (xk)dk = −f(xk)

• xk + 1 = xk + dk = xk − f(xk)
f ′(xk)

(using this form here)
• f ′(x) = 2x

• column dk is used to store the relative error (stop criteria)

Resolution with the String

Just the same as above but using systematically f ′(x) = f ′(x0) = 2x0 = 2 · 2 = 4

84 Chapter 8. Solving nonlinear systems - Quasi-Newton methods

Resolution with the Secant

Using the secant method, we get the first iteration (x2) this way

xk+1 = xk −
f(xk)

f(xk−1)−f(xk)
xk−1−xk

⇒

x2 = x1 −
f(x1)

f(x0)−f(x1)
x0−x1

= 1− −1
2−(−1)
2−1

= 1− −1

3
= 1− (−0.33333) = 1.33333

It is particulary interesting to see that the Broyden method gives us just the same (as expected,
Broyden is just the same as secant except it applies as well to nD)

Recall, the Broyden method requires :

• x0 = 2 and x1 = 1 are both provided
• A0 = 1

• d0 = x1 − x0
• yk = f(xk+1)− f(xk)

• Ak = Ak−1 +
(yk−1−Ak−1dk−1)d

t
k−1

dtk−1dk−1

• dk = dk(xk) the solution of Akdk = −f(xk) (considering dk is the approximation of f ′(xk)
• xk+1 = xk + dk(xk)

For instance the first iteration :

• k = 1, k − 1 = 0, x0 = 2 and x1 = 1

• A0 = 1

• d0 = 1− 2 = −1

• y0 = f(x1)− f(x0) = −1− 2 = −3

• A1 = A0 + (y0−A0d0)d0
d0d0

= 1 + (−3−1·(−1))·(−1)
−1·(−1) = 1 + (−3+1)·(−1)

1 = 1 + 2
1 = 3

• d1 = −f(x1) ·A1
−1 = 1 · 13 = 0.3333

• x2 = x1 + d1 = 1 + 0.3333 = 1.33333

8.6. Practice 85

8.6.2.2 Part 2

Solve the equation x = cosx. Use x0 = 1.5 (radians) as start point and 10 −3 as stop criteria.

Resolution with Newton

Resolution with the String

Resolution with the Secant

CHAPTER 9

Optimisation with The Newton method

Contents
9.1 Introduction . 87

9.1.1 Principle . 87
9.2 The Newton method . 88

9.2.1 Relation between jacobian of the gradient and the hessian 88
9.2.2 Algorithm for the Newton method . 89

9.3 The Quasi-Newton-Secant-Broyden method . 90
9.3.1 Algorithm for the Quasi-Newton-Secant-Broyden method 90

9.4 Practice . 91
9.4.1 Exercise 19 : Quasi-Newton-Secant-Broyden 91

9.1 Introduction

Let f : Rn → R a C2 function for which we search the optimum. We will apply blindly here the
Newton and Quasi-newton method to the optimisation problem, yet knowing they wont neces-
sarily converge in every case.
The limitations are the same than that of the non-linear system solving algorithms. For the sake
of completness, the reader should know that there are more complete and robust methods such
as, for instance, BFGS which is a combination of both the Descent and Quasi-Newton methods.

9.1.1 Principle

The necessary optimality condition (but not sufficient) is ∇f(x) = 0. Hence the idea of the New-
ton method is to use the Newton or quasi-Newton algorithms to find the zeros of the function:

g(x) = ∇f(x)

Caution: The algorithm doesn’t tell the nature of the zero. It can be a maximum, minimum
or a mountain pass. Hence, a good knowledge of the problem is required and, in addition, it is
always required to check the sufficient condition:

∇2f(x∗) is positive-definite

88 Chapter 9. Optimisation with The Newton method

in order to know whether we have a solution for the problem.

This is the second drawback of the Newton method. After the lack of a guarantee for conver-
gence, it doesn’t indicate the nature of the solution it finds.

9.2 The Newton method

Let’s note that if f is a Rn → R function, then ∇f is a Rn → Rn function, we we can call g for
instance:

f : Rn → R⇒
g = ∇f : Rn → Rn

: (x1...xn)t → (∂1f....∂nf)t

Hence, we can apply the Newton algorithm seen in the previous chapters (to resolve a n

unknwon values, n equations system).

The iteration is given by the following relations:

xk+1 = xk + dk(xk) where Jg(xk)dk+1 = −g(xk)

By replacing g(x) with ∇f(x), we get :

xk+1 = xk + dk(xk) where J∇f (xk)dk+1 = −∇f(xk)

One should note:

∇g(x)t = Jg(xk) = J∇f (xk) = ∇2f(xk)

as is demonstrated in the next section. Hence, the final notation of the iteration becomes:

xk+1 = xk + dk(xk) where ∇2f(xk)dk+1 = −∇f(xk)

9.2.1 Relation between jacobian of the gradient and the hessian

In this relation resides the great simplicity of the approach. As stated above, if we considere the
gradient of function f as a g : Rn → Rn function, the jacobian matrix of this function is equals to
the hessian.

Considering:

∇f t = (∂1f...∂nf) = (g1...gn) = gt

9.2. The Newton method 89

Then:

Jg =

 ← ∇gt1 →
...

← ∇gtn →

 =

 ∂1g1 ... ∂ng1
...

∂1gn ... ∂ngn


=

 ∂1∂1f ... ∂n∂1f

...

∂1∂nf ... ∂n∂nf

 =

 ∂11f ... ∂n1f

...

∂1nf ... ∂nnf

 = ∇2f

9.2.1.1 Example

Let’s say f(x1, x2) = 1
2(x1x2 − 2)2 + 1

2(x1−2)
2. Let’s compute the Jacobian of the gradient matrix

and the hessian.

First, we need a resolved way of f(x) :

f(x1, x2) =
1

2
x1

2x2
2 − 3x1x2 + 2 +

1

2
x1

2 +
1

2
x2

2

Let’s compute the derivatives:

∂1f = x1x2
2 − 3x2 + x1

∂2f = x1
2x2 − 3x1 + x2

∂11f = x2
2 + 1

∂12f = ∂21f = 2x1x2 − 3

∂22f = x1
2 + 1

The hessian is:

∇2f(x) =

(
x2

2 + 1 2x1x2 − 3

2x1x2 − 3 x1
2 + 1

)

The gradient matrix is:

∇2f(x) =

(
x1x2

2 − 3x2 + x1
x1

2x2 − 3x1 + x2

) The jacobi of the gradient is:

∇2f(x) =

(
x2

2 + 1 2x1x2 − 3

2x1x2 − 3 x1
2 + 1

)

9.2.2 Algorithm for the Newton method

Inputs :

• (E1) A function f : Rn → R ∈ C2 which we want to optimize
• (E2) The gradient ∇f :: Rn → Rn continued
• (E3) The hessian ∇2f :: Rn → Rn continued
• (E4) A first approximation of the solution x0 ∈ Rn

• (E5) The asked precison εx ≥ 0, ε∇f ≥ 0

Initialization :

• (O1) k = 0

Iterations :

90 Chapter 9. Optimisation with The Newton method

• (I1) Compute dk(xk) the solution of ∇2f(xk)dk = −∇f(xk)

• (I2) xk+1 = xk + dk(xk)

• (I3) k = k + 1

Stop :

• (A1) ||xk+1−xk||
||xk|| < εx

• (A2) |∇f(xk+1)| ≤ ε∇f

Output :

• (O1) x∗ = xk+1 is an approximation of the zero of f
• Caution: one doesn’t know whether the returned optimum is a minimum, a maximum or a

mountain pass.

The convergence is not guaranteed whenever the function is not enough linear or if the initial
solution x0 is too far from the solution. On the other hand, when the algorithm converges, it
converges very fast.

9.3 The Quasi-Newton-Secant-Broyden method

In concrete problems, the hessian is often very difficult to compute and/or code, often because
of the many indices. In the end, it is rarely correctly computed.
This is where the Quasi-Newton method kicks in. It avoid the computation of the hessian by
using an approximation instead.

9.3.1 Algorithm for the Quasi-Newton-Secant-Broyden method

Inputs :

• (E1) A function f : Rn → R ∈ C2 which we want to optimize
• (E2) The gradient ∇f :: Rn → Rn continued
• (E3) A first approximation of the hessian A0 (by default A0 = I)
• (E4) A first approximation of the solution x0 ∈ Rn

• (E5) The asked precison εx ≥ 0, ε∇f ≥ 0

Initializations :

• (O1) x1 = x0 −A0
−1∇f(x0)

• (O2) d0 = x1 − x0
• (O3) y0 = ∇f(x1)−∇f(x0)

• (O4) k = 1

Iterations :

9.4. Practice 91

• (I1) The Broyden update:

Ak(xk) = Ak−1 +
(yk−1 −Ak−1dk−1)dtk−1

dtk−1dk−1

• (I2) Compute dk = dk(xk) the solution of Akdk = −∇f(xk)

• (I3) xk+1 = xk + dk(xk)

• (I4) yk = ∇f(xk+1)−∇f(xk)

• (I5) k = k + 1

Stop :

• (A1) ||xk+1−xk||
||xk|| < εx

• (A2) |∇f(xk+1)| ≤ ε∇f

Output :

• (O1) x∗ = xk+1 is an approximation of the zero of f
• Caution: one doesn’t know whether the returned optimum is a minimum, a maximum or a

mountain pass.

The convergence is not guaranteed whenever the function is not enough linear or if the initial
solution x0 is too far from the solution. On the other hand, when the algorithm converges, it
converges very fast.

9.4 Practice

9.4.1 Exercise 19 : Quasi-Newton-Secant-Broyden

One wants to resolve the following optimisation problem:

min
(x1,x2)∈X⊂R2

f(x1, x2)

using the following algorithms:

• Newton
• Quasi-Newton-Secant-Broyden

What are the input parameters (gradient, etc.) one needs to compute for each of the algo-
rithm ?

9.4.1.1 Solution

For Newton, the gradient and the hessian need to be computed.
For Quasi-Newton-Secant-Broyden, only the gradient needs to be computed.

Part II

Linear Programming

CHAPTER 10

Linear programming

Contents
10.1 Introduction . 95

10.1.1 The problem of a manufacturing company . 96

10.1.2 Modeling . 96

10.2 Definitions . 97

10.2.1 Linear Programming . 97

10.2.2 Feasible solutions . 97

10.2.3 The score function . 97

10.3 Math reminder . 97

10.3.1 The Gauss method . 97

10.3.2 Algebra reminder . 99

10.3.3 Draw a line on a graph . 99

10.4 Practice . 99

10.4.1 Exercise 1 : Gauss . 99

10.4.2 Exercise 2 : Modeling . 101

10.1 Introduction

In Linear Programming, we are facing a function f of the form f : Rn → R. The goals is to find
argmin or argmax of function f but by taking additionnal linear constraints into consideration.
The additional constraints form a linear system. The constraint for the solution x to belong
to a specific domain D. x ∈ D ∈ Rn and D is convexe.

The approach enabling one to solve such kind of problems is called Linear optimization or
Linear Programming. We are looking for efficient algorithms enabling one to solve systems
with thousands of variables and/or constraints.

We’ll introduce the typical problems one has to solve using Linear Programming (LP or PL
in french) with an example.

96 Chapter 10. Linear programming

10.1.1 The problem of a manufacturing company

A company is specialized in the manufacturing of two types of products:

• Air conditioners
• Fans (french: ventilateurs)

The two types of product required a given amount of work hours from:

• The machines
• The man workforce (labor)

The following array illustrates the amount of work hours required from both resources in order
to complete the products manufacturing as well as the profit. Each are given per monetary unit
(MU):

Machine work hours Labor work hour Profit
Air conditioner 2h / unit 3h / unit 25 UM / unit

Fan 2h / unit 1h / unit 16 UM / unit
Total available 240 140

10.1.2 Modeling

10.1.2.1 Decision Variables

The company wants to decide the amount of air conditioners and the amount of fans it should be
manufacturing in order to maximize the profit. This leads to choosing two decision variables:

• x1 = number of air conditioners
• x2 = number of fans

10.1.2.2 The score function

The objective of the company (implicit in the text) is to find out the production program that
should maximize its profit. Hence the score is the profit which is given by:

max z(x) = 25x1 + 15x2

10.1.2.3 Constraints of the model

The resources are limited, which imply a series of constraints in the model:

2x1 + 2x2 ≤ 240 available machine workhour

3x1 + x2 ≤ 140 available labour workhour

x1 ≥ 0 x2 ≥ 0 non-negativity constraints

10.2. Definitions 97

10.1.2.4 Complete Model

(LP)


max z(x) = 25x1 + 15x2

u.c.

∣∣∣∣∣∣∣∣
(S)

{
2x1 + 2x2 ≤ 240

3x1 + x2 ≤ 140

xi ≥ 0 (positivity constraints)

10.2 Definitions

10.2.1 Linear Programming

In the context of Linear Programming (LP or PL), one needs to solve the type of problems
illustrated above. The linearity appears as much in the score function z(x) than in the constraints
of the system (S).

10.2.2 Feasible solutions

The set of points satisfying the constraints are called feasible solutions (in french solutions
admissibles). A solution is feasible ⇔ (iff) it is a solution of the linear system (S) and if it
satisfies each of the positivity constraints.

10.2.3 The score function

The function to be minimized (resp. maximized) is called the score function, or cost function or
even economic function.

10.3 Math reminder

10.3.1 The Gauss method

Let’s consider, for instance, such a system:(
a11 a12
a21 a22

)
︸ ︷︷ ︸ ·

(
x1
x2

)
︸ ︷︷ ︸ =

(
b1
b2

)
︸ ︷︷ ︸

A x b

We want an efficient way to solve such kind of systems because systematically inversing the
matrix the good’ol way is a lot to costy. There is therefore the Gauss method.

98 Chapter 10. Linear programming

10.3.1.1 Method 1 : build the identity matrix

Build a matrix-form representation of the problem which ends up with the matrix A on the left
and the vector b on the right.
Then perform a series of elementary row operations to transform the left-side matrix A into the
identity matrix. This ends up with the solution of the vector x on the right.

(A | b)

;

row operations

(I | x)

The possible operations on rows are exhaustively:

• Multiply a row by a factor (fraction, negative, whatever)
• Add a row to another row (with whatever factor)

10.3.1.2 Method 2 : enrich method 1 to get the inverse of the matrix A

One can enrich the previous method to get the inverse of the matrix A as well.

(A | I | b)

;
row operations

(I | A−1 | x)

10.3.1.3 Method 3 : Gauss pivot

This third method is just a way to sytematize the resolution. The idea is to perform the row
operations towards a specific order of resolution.

First we try to build a left-side matrix which has 0 everywhere under the diagonal line, only
1’s on the diagonal line without considerating what is above the diagional line:

1 . . ∗
0 1 . .

...

0 0 0 1

∣∣∣∣∣∣∣∣
∗
∗
∗
xn


As shown above, this enables one to find the value of the last index of x, i.e xn. Once this

one is obtained, and at least one row is composed by only 0’s and a single 1, it is a lot easier to
resolve the other rows and find the other indices of x.
This method is called the Gauss pivot.

The order to follow when attempting to fill the part below the diagonal line with 0’s should be
the following: 

...

3

2 5

1 4 6 ...

∣∣∣∣∣∣∣∣
∗
∗
∗
∗



10.4. Practice 99

10.3.2 Algebra reminder

a ≥ b⇔ a− ε = b with ε ≥ 0

a ≤ b⇔ a+ ε = b with ε ≥ 0

a ≤ b⇔ −a ≥ −b

a ∈ R⇔


a = a′ − a′′

a′ ≥ 0

a′′ ≥ 0

The last one states that each and every real number can be expressed as the substraction
of two other real numbers.

10.3.3 Draw a line on a graph

Just a quick reminder on how to draw a
line on a plan when given the equation of
the line.
Let’s assume one is given the equation of
a line in the form

x2 = u · x1 + v Let’s transform it in :

d = a1 · x1 + a2 · x2

Drawing the line becomes then easy. See
graph on the right.

10.4 Practice

10.4.1 Exercise 1 : Gauss

Let (S) be the following system of linear
equations:

(S)


x1 − x2 − x3 = 0

2x1 + x2 − 2x3 = −3

−x1 + 2x2 − x3 = −5

One can write it in matrix form:

(S)

 1 −1 −1

2 1 −2

−1 2 −1


︸ ︷︷ ︸

·

 x1
x2
x3


︸ ︷︷ ︸

=

 0

−3

−5


︸ ︷︷ ︸

A · x = b

Use elementary row operations to find the solution of the system (S) and at the same time
the inverse matrix A−1.
Then check that the solution obtained for x is valid and ensure the A−1 matrix is correct.

100 Chapter 10. Linear programming

10.4.1.1 Run Gauss Pivot

(S)

 1 −1 −1

2 1 −2

−1 2 −1

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
0

−3

−5

 I

II

III

(S)

 1 −1 −1

2 1 −2

0 1 −2

∣∣∣∣∣∣
1 0 0

0 1 0

1 0 1

∣∣∣∣∣∣
0

−3

−5

 I

II

III + I

(S)

 1 −1 −1

0 3 0

0 1 −2

∣∣∣∣∣∣
1 0 0

−2 1 0

1 0 1

∣∣∣∣∣∣
0

−3

−5

 I

II − 2I

III

(S)

 1 −1 −1

0 3 0

0 0 −2

∣∣∣∣∣∣
1 0 0

−2 1 0
5
3 −1

3 1

∣∣∣∣∣∣
0

−3

−4

 I

II

III − 1
3II

(S)

 1 −1 −1

0 1 0

0 0 1

∣∣∣∣∣∣
1 0 0

−2
3

1
3 0

−5
6

1
6 −1

2

∣∣∣∣∣∣
0

−1

2

 I
1
3II

−1
2III

(S)

 1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
−1

2
1
2 −1

2

−2
3

1
3 0

−5
6

1
6 −1

2

∣∣∣∣∣∣
1

−1

2

 I + II + III

II

III

10.4.1.2 Results

A−1 =

 −1
2

1
2 −1

2

−2
3

1
3 0

−5
6

1
6 −1

2

 and x =

 1

−1

2



10.4.1.3 Verifications

A ·A−1 =

 1 −1 −1

2 1 −2

−1 2 −1

 ·
 −1

2
1
2 −1

2

−2
3

1
3 0

−5
6

1
6 −1

2

 =

 1 0 0

0 1 0

0 0 1


A · x =

 1 −1 −1

2 1 −2

−1 2 −1

 ·
 1

−1

2

 =

 1 + 1− 2

2− 1− 4

−1− 2− 2

 =

 0

−3

−5

 = b

10.4. Practice 101

10.4.2 Exercise 2 : Modeling

Put in LP form the following problems

10.4.2.1 Part I : feeding the cattle

A farmer wants to find out the amount of three type of cereal grains to be given to the cattle in
order to meet their nutritional needs, to the minimum possible cost. The required data is given
below:
(In french: Corn=maïs, wheat=blé, barley=orge)

Corn Wheat Barley Minimum required
Protein (mg / kg) 10 9 11 20
Calcium (mg / kg) 50 45 58 70

Iron (mg / kg) 9 8 7 12
Calories (Cal / kg) 1000 800 850 4000

Cost / kg 5.5 UM 4.7 UM 4.5 UM

Under LP form:

x1 = amount of corn in kg, x2 = amount of wheat in kg, x3 = amount of barley in kg

(LP)



min z(x) = 5.5x1 + 4.7x2 + 4.5x3

u.c.

∣∣∣∣∣∣∣∣∣∣∣∣∣
(S)


10x1 + 9x2 + 11x3 ≥ 20

50x1 + 45x2 + 58x3 ≥ 70

9x1 + 8x2 + 7x3 ≥ 12

1000x1 + 800x2 + 850x3 ≥ 4000

xi ≥ 0 (positivity constraints)

10.4.2.2 Part II : transportation

A company has 3 manufacturing centers (U1, U2, U3) and three resellers (V1, V2, V3). The CEO
wants to minimize the total transportation cost of the products brought to the reselling centers.
The required data is given below:

Manufact. production
U1) 200
U2) 150
U3) 300

Resellers. demand
V1) 150
V2) 200
V3) 200

Transp. cost V1 V2 V3
U1) 10 7 8
U2) 15 12 9
U3) 7 8 12

Under LP form:

102 Chapter 10. Linear programming

xij = amount of units transported between manuf. center Ui and reseller Vj

(LP)



min z(x) = 10x11 + 7x12 + 8x13 + 15x21 + 12x22 + 9x23 + 7x31 + 8x32 + 12x33

u.c.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(S)




x11 + x12 + x13 ≤ 200

x21 + x22 + x23 ≤ 150

x31 + x32 + x33 ≤ 300
x11 + x21 + x31 ≥ 150

x12 + x22 + x32 ≥ 200

x13 + x23 + x33 ≥ 200

xi ≥ 0 (positivity constraints)

10.4.2.3 Part III : Bike production

A bike manufacturer produces 4 different types of bikes:

Cycle type Unit Profit Assembly time Break type
c1 12 UM 30 min /unit gummy
c2 25 UM 60 min /unit gummy
c3 12 UM 45 min /unit disk
c4 16 UM 45 min /unit gummy

The available resources are:

• 32 assembly hours
• 48 tires for C1
• 144 tires for the other models
• 30 disk breaks
• 55 gummy breaks

There is also an additional constraint: the manufacturer must satisfy daily a minimum amout
of 6 bikes C1 et 6 bikes C2.

Under LP form:

xi = number of bike Ci to be manufactured everyday.

(LP)



max z(x) = 12x1 + 25x2 + 12x3 + 16x4

u.c.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(S)



0.5x1 + x2 + 0.75x3 + 0.74x4 ≤ 32

2x1 ≤ 48

2x2 + 2x3 + 2x4 ≤ 144

x1 ≥ 6

x2 ≥ 6

x1 + x2 + x4 ≤ 55/2

x3 ≤ 30/2

xi ≥ 0 (positivity constraints)

CHAPTER 11

Geometric Approach

Contents
11.1 Introduction . 103

11.1.1 Definition - Convexe . 103
11.1.2 Definition - polyhedron . 103

11.2 Approach . 104
11.2.1 Naive algorithm . 104
11.2.2 geometrical approach . 104

11.3 Illustration example . 105
11.3.1 Stage 1 : draw the polygon . 105
11.3.2 Stage 2 : draw the countour curves . 105
11.3.3 Stage 3 : find the highest curve . 106

11.4 Graphical sensitivity analysis . 106
11.5 Practice . 107

11.5.1 Exercise 3 : geometrical approach . 107

This approach does only work for very little LP where the number of decision variables is no
more than 2 or perhaps 3.

11.1 Introduction

11.1.1 Definition - Convexe

A set is Convexe whenever ev-
ery edge connecting two ver-
tices of the form is only within the
form itself, never outside.
See image on the left for a for-
mal illustration.

11.1.2 Definition - polyhedron

A polyhedron is a geometrical form closed bounded (french : fermée bornée) formed by the
intersection of hyperplans.
Examples:

104 Chapter 11. Geometric Approach

• (E1) A polygon is a polyhedron of dimension 2, whose sides are segments

• (E2) A diamond is a convexe polyhedron of dimension 3.

• (E3)

A PL with three decision variables (x1, x2, x3)

and three linear constraints represented by the
plans (Π1,Π2,Π3) posess feasible solutions in
the polyhedron defined by the three plans Π as
well as the ground and the walls formed b y the
positivity constraints.

11.2 Approach

The approach strongly relies on the fact that the set of solution belongs to a convexe polyhe-
dron. As a first step, one should ensure the targer LP sytem respects this condition. (theorem)

Then, knowing we are looking for an extreme value, either an argmin or an argmax following
a linear score function, the solution is mandatorily a vertex of the polyhedron. (theorem)

11.2.1 Naive algorithm

Based on these theorems, one can extract a naive algorithm:

• Find the vertices of the polyhedron
• For each of them, evaluate the score function
• Keep the one giving the best result

This algorithm is systematic and programmable. It can however not be applied on large LP
problems as the nuber of vertices is prohibitive.

11.2.2 geometrical approach

A geometrical approach is largely based on the naive algorithm presented above. However, the
ability to draw a little schema of the solution polyhedron enables one to find the solution faster
than testing each and every vertex.
The next section presents an example to illustrate the technic.

11.3. Illustration example 105

11.3 Illustration example

Let’s solve the example LP from the previous chapter using the geometrical approach. The PL
is the

(LP)


max z(x) = 25x1 + 15x2

w.r.

∣∣∣∣∣∣∣∣
(S)

{
2x1 + 2x2 ≤ 240

3x1 + x2 ≤ 140

xi ≥ 0 (positivity constraints)

Observations

1. Each and every constraint of (S) represent the equation of a half-plan.
2. The set of every constraints of (S), form an intersection of half-plans, i.e. a convexe

polygon.
3. The set of feasible solutions is represented by this polygon.
4. The graph os the score function z(x) is linear, i.e. it is by linearity a plan.
5. The countour curves of the score function are lines.

11.3.1 Stage 1 : draw the polygon

Let’s use the different constraints to draw
the convexe polygon representing the set
of feasible solutions.

On the graph on the right, the polygon is
the area in gray.

11.3.2 Stage 2 : draw the countour curves

A countour curve of the score function z(x) = 25x1 + 15x2 is a curve that contains all the points
on the surface of the graphe z(x) that are at the same height.
One can choose a constant c that fixes a specific value for that height. Hence the equation
c = 25x1 + 15x2 represents a countour curve of z(x). These countour curves are obviously lines
since the graphe z(x) is a plan.

106 Chapter 11. Geometric Approach

The graph on the right represents various
countour curves. The more the curve
is on the "right", the more the height it
represent is high. The height is viven by
the value of c.

As the function z(x) is 0 at the origin and
the normal vector to the line is z(x) is

n =

(
25

15

)
//

(
5

3

)
(gradient of z(x))

it is easy to draw the line for height 0. The
other curves are parallel.

11.3.3 Stage 3 : find the highest curve

Ae’re now left with searching the countour curve, the closest to the highest possible value of z(x)

in the convexe polygon.

By overlaying the countour curves on the
set of of feasible solutions represented
by the convexe polygon, one immediately
sees the solution of the LP.
Indeed, we are looking to maximize z(x),
i.e. to find the highest point on top of the
convexe polygon. This implies searching
the highest countour curve on top of the
convexe polygon.
Here, this is the right-most curve runnin
on point B, where B is the solution of the
system:{

2x1 + 2x2 = 240

3x1 + x2 = 140
⇒ B = z(10, 110)

In conclusion, the solution of the LP is arg max z(x1, x2) = (10, 110 and max z(x) = 1900.

11.4 Graphical sensitivity analysis

We study here the sensitivity of the optimal solution on a variation in the coefficients of the score
function.

11.5. Practice 107

Let’s considere the same LP as previously:

(LP)


max z(x) = 25x1 + 15x2

w.r.

∣∣∣∣∣∣∣∣
(S)

{
2x1 + 2x2 ≤ 240

3x1 + x2 ≤ 140

xi ≥ 0 (positivity constraints)

Let’s replace the coefficients 25 and 15 by a
and b :

(LP)


max z(x) = ax1 + bx2

w.r.

∣∣∣∣∣∣∣∣
(S)

{
2x1 + 2x2 ≤ 240

3x1 + x2 ≤ 140

xi ≥ 0 (positivity constraints)

We can see in the graph below that the solution does not vary as long as the slope of the
lines of the countour curves is kept within a specific range.
Teh slope of the line is −a/b given by teh coefficients of the score function. A slight variation in
these coefficients doesn’t change the solution of the LP

As long as the red line (countour curve) re-
mains in the green cone, the solution of the PL
remains unchanged and s stays on the point B
of the polyhedron.
If, when rotating over B, the slope of the
countour line in red gets under the line AB, A
becomes the solution.
If the slope of the countour line in red gets
above the line BC, C becomes the solution.

In other terms:

Slope Solution
]−∞,−3[C
]− 3,−1[B
]− 1,∞[C

For −3, all the points on BC are solutions. For
−1, all the points on AB are solutions.

11.5 Practice

11.5.1 Exercise 3 : geometrical approach

Solve the following LP graphically and run a graphical sensitivity analysis:

(LP)



max z(x) = 30x1 + 70x2

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


2x1 + 5x2 ≤ 40

7x1 + 4x2 ≤ 56

x1 + x2 ≤ 10

xi ≥ 0 (positivity constraints)

108 Chapter 11. Geometric Approach

11.5.1.1 Graphical solving of the PL

A = A(0, 8)

B = B(103 ,
20
3)

C = C(163 ,
14
3)

D = D(8, 0)

O = O(0, 0)

z = 560

z = 1700
3

z = 1460
3

z = 240

z = 0

Hence B is the solution point.

11.5.1.2 Sensitivity Analysis

(LP)

w.r.
∣∣∣∣∣∣∣∣∣∣

(S)


2x1 + 5x2 ≤ 40

7x1 + 4x2 ≤ 56

x1 + x2 ≤ 10

xi ≥ 0 (positivity constraints)

Slope
]−∞,−7/4[

]− 7/4,−1[

]− 1,−2/5[

]− 2/5,∞[

Max
D
C
B
A

−7
4 on segment CD
−1 on segment BC
−2

5 on segment AB

CHAPTER 12

Algebraic Approach - The Simplex
algorithm

Contents
12.1 Introduction . 109

12.2 Illustration example . 110

12.2.1 The technique of parameterization . 110

12.2.2 The Simplex algorithm . 112

12.3 The Simplex algorithm . 115

12.3.1 Resumed form . 116

12.4 Notes . 116

12.5 Practice . 116

12.5.1 Exercise 5 : Algebraic Simplex . 116

12.5.2 Exercise 6 : Algebraic Simplex . 120

12.1 Introduction

The idea here is to find an efficient algorithm which can be applied to very large systems with a
high number of dimensions. The algorithm is the Simplex.

The idea at the root of the Simplex is still to find the set of feasible solutions, knowing it
contains the vertex of the polytope (= convexe polyhedron of higher dimensions) giving the best
score. As the set of vertices can well be very huge for a large size LP, the idea is not to go
through each and every vertex but only a few of them.
One starts with an initial vertex and, for each iteration of the Simplex, one moves to an adjacent
vertex where the score is better. When there is not better in the neighbourhood of the current
one, the algorithm stops and the current vertex is the solution to the LP.

110 Chapter 12. Algebraic Approach - The Simplex algorithm

The algorithm doesn’t run through each and
every vertex of the polytope since it always
moves to a better vertex. There is never no
going back nor any regression.

Below, we will see a "naive" approach which
underlines that the method illustrated on the
right schema on the right comes from a very
simple algebraic approach quite easy to un-
derstand.

12.2 Illustration example

The Simplex - despite its name - is not an easy algorithm, not that its overwhelimingly compli-
cated either. Yet explaining the Simplex on a purely theoretical plan is a bit tricky.
We will thus run through an example to present the algorithm.

The example we will be using is:

(LP)



min z(x) = 2x1 − 3x2 + 5x3

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


x1 − 2x2 + x3 − x4 = 4

x2 + 3x3 + x5 = 6

2x1 + x3 + 2x4 + x6 = 7

xi ≥ 0 (positivity constraints)

We don’t care about the score function at
start. We focus first on finding an admissible
solution, i.e. an initial solution that satisfies
the constraints.
This first step resolved in solving a 3 equa-
tions with 6 unknown variables system. The
set of solutions is infinite.

Amongst this infinity, we are looking for a first one that satisfies the constraints as well as the
positivity constraints.

The degree of freedom is 3 ⇒ 3 variables are taken out of the system and replaced by
lambda values as we’ll see below.

12.2.1 The technique of parameterization

We are facing a 6 unknown variables system with only 3 equations. Let’s make it a solvable sys-
tem. We choose 3 variables to be represented as parameters. Thanks to this parameterization
of three of the variables, we’re left with a 3 equations with 3 unknown variables, hence a solvable
system.

12.2.1.1 First attempt - choice 1

Let’s say (x1, x2, x3) = (λ1, λ2, λ3) are the chosen parameters

12.2. Illustration example 111

This gives us the following system:

(S)


λ1 − 2λ2 + λ3 − x4 = 4 (I)

λ2 + 3λ3 + x5 = 6 (II)

2λ1 + λ3 + 2x4 + x6 = 7 (II)

The parameterized variables (x1, x2, x3) =
(λ1, λ2, λ3) are called the off-base variables
and the remaining ones are the base vari-
ables.
Next, let’s express the base variables using
the off-base variables:

For (I) and (II), the resolution is quite
straightforward:

(S)


x4 = −4 + λ1 − 2λ2 + λ3 (I)

x5 = 6− λ2 − 3λ3 (II)

2λ1 + λ3 + 2x4 + x6 = 7 (III)

by substituting (I) in (III), The system (S)

is solved

(S)


x4 = −4 + λ1 − 2λ2 + λ3 (I)

x5 = 6− λ2 − 3λ3 (II)

X6 = 15− 4λ1 + 4λ2 − 3λ3 (III)

Once the system is resolved, any possible value for (λ1, λ2, λ3) still provides a solution of
(S), such as, for instance (λ1, λ2, λ3) = (0, 0, 0).
This gives us (x1, x2, x3) = (−4, 6, 1). Unfortunately this solution is not admissible since −4

doesn’t satisfy one of the positivity constraint. No luck !

12.2.1.2 Second attempt - choice 2

Let’s try another triple of xi for the off-base variables λ1, hoping this time to have a little more
success. In addition, we want a solution with the off-base variables, the λ1 parameters set to 0.

Let’s say (x2, x4, x5) = (λ2, λ4, λ5) are off-base.

This gives us the following system:

(S)


x1 − 2λ2 + x3 − λ4 = 4 (I)

λ2 + 3x3 + λ5 = 6 (II)

2x1 + x3 + 2λ4 + x6 = 7 (II)

As before, lets try to solve this system by ex-
pressing the base variables (x1, x3, x6) with
the off-base variables (x2, x4, x5) = (λ2, λ4,
λ5).

the extraction of x3 is free in (II):

(S)


x1 − 2λ2 + x3 − λ4 = 4 (I)

x3 = 2− 1
3λ2 −

1
3λ5 (II)

2x1 + x3 + 2λ4 + x6 = 7 (II)

then by substituting (II) in (I), one gets:

(S)


x1 = 2 + 7

3λ2 + λ4 + 1
3λ5 (I)

x3 = 2− 1
3λ2 −

1
3λ5 (II)

x6 = 7− 2x1 − x3 − 2λ4 (III)

finally with (I) and (II) in (III)

(S)


x1 = 2 + 7

3λ2 + λ4 + 1
3λ5 (I)

x3 = 2− 1
3λ2 −

1
3λ5 (II)

x6 = 1− 13
3 λ2 − 4λ4 − 1

3λ5 (III)

In this system, using (λ2, λ4, λ5) = (0, 0, 0) gives (x1, x3, x6) = (4, 2, 1) which is a feasible
solution.
This is called the base feasible solution. Finally (x1, x2, x3, x4, x5, x6) = (4, 0, 2, 0, 0, 1)
is a feasible solution of base (x1, x3, x6) but certainly not an optimal solution of min z(x) =

2x1 − 3x2 + 5x3.

112 Chapter 12. Algebraic Approach - The Simplex algorithm

Now let’s express the score function with
the off-base variable (x2, x4, x5) = (λ2, λ4,
λ5). By substituting (I) and (II) in the score
function, we get:

min z(x) = 14 + 2λ4 − λ5

= 14 + (0 2 − 1)︸ ︷︷ ︸
∆

 λ2
λ4
λ5


where ∆t = (0 2 − 1)t is called the marginal cost or reduced cost of the score function

z(x).. The score we get with the initial solution is min z(x) = 14.

12.2.2 The Simplex algorithm

12.2.2.1 Detecting the Pivot

Looking carefully at the marginal costs, we can see that at least one of it is negative⇒ it is still
possible to get a better score. Indeed, by taking a positive value above 0 for λ5 (we took 0 for
every off-base variables) we can inevitably get a lower score since its marginal cost is negative.

Danzig I : one comes in:

This step is essential in the Simplex algorithm:

• If none of the marginal costs is < 0, the algorithm is finished. It is indeed not possible to
minimize further with a value above 0 (positivity constraint) without a negative coefficient
to play with.
• If several of the marginal costs are negative, one chooses the one with the biggest coeffi-

cient

The chosen variable λ5 is called the Danzig I criteria. By taking a value different than the 0
we have fixed so far, we can ensure:

• z(x) will mandatorily be lower than 14.
• x remains a feaible solution because the set of parameters (λ2, λ4, λ5) givbe a family of

feasible solutions whatever their values as long as they are ≥ 0.

Shortly put, chosing the Danzig I criteria means chosing the lambda λ with the highest
negative coefficient in the score.

The Danzig I criteria will get into the base variables

Danzig II : and one goes out:

As we put an new variable in the base variables, one of those already in the base variables
must get out and join the off-base variables. The way that variable is chosen is a bit of a magic
recipe. The principle is as follows:

By putting another variable in the base variables and giving it a value, one might break either
one of the positivity constraints.
In order to avoid this, we need to check the highest value the λ5 parameter might take before
one of the former base variables base variables (x1, x3, x6) becomes negative.

12.2. Illustration example 113

Let’s analyze the situation. What happens on the system regarding the Danzig I critera
whenever it becomes significant. i.e. we considere it but let the others out, i.e. (λ2, λ4) = (0, 0)

From (I) x1 = 2 + 7
3λ2 + λ4 + 1

3λ5 = 0 ⇔ λ5 = −6 < 0 (violates p.c.)
From (II) x3 = 2− 1

3λ2 −
1
3λ5 = 0 ⇔ λ5 = 6 > 0

From (III) x6 = 1− 13
3 λ2−4λ4 − 1

3λ5 = 0 ⇔ λ5 = 3 > 0

Which we analyze this way:

• From (I), considering x1, we get λ5 = −6 which violates a p.c⇒ discarded.
• The choice remains between (II) considering x3 or (II) considering x6. Amongst those,

we need to chose the most restrictive.
The value that the analysis gives us for λ5 is the maximum value that λ5 can take before
the corresponding xi becomes negative.

• From (II), considering x3, the highest possible value for λ5 is 6.
• From (III), considering x6, the highest possible value for λ5 is 3.

• Hence we choose (III), considering x6 as it is the most restrictive variable yet still
respecting the feasible solution condition

λ5 = 3 > 0 is the highest possible positive λ5 minimizing the score without violating the
positivity constraints on the base variables.
The corresponding variable x6 - the one matching the most restrictive value - is The Danzig II
criteria. The Danzig II criteria will leave the base variables and get into the off-base variables

A graphical representation of the analysis above is as follows:

Hence λ5 is top-bounded by x6 ⇒ x6 is the Denzig II criteria.

12.2.2.2 Pivoting

Thanks to the above analysis, we get a new solution:

• Danzig I = λ5 called incoming variable (french: variable entrante)
• Danzig II = x6 called outgoing variable (french: variable sortante)

114 Chapter 12. Algebraic Approach - The Simplex algorithm

Hence x6 becomes a parameter replacing λ5 which becomes a variable. Considering the
highest value for λ5 which was 3, we get a new feasible solution :

(x1, λ2, x3, λ4, x5, λ6) = (4, 0, 2, 0, 3, 0)

which has better score than the previous feasible solution. We have hence progressed in our
search of the optimum.
The new set of base variables now is (x1, x3, x5) and the off-base variables now are (x2, x4, x6)
= (λ2, λ4, λ6).

12.2.2.3 Reparameterization

Once the couple (xi, λj) to be exchanged has been determined, the pivot needs to be propa-
gated to the system and the score variable. Both need to be expressed in terms of the off-base
variables.

Before pivot :

(S)


x1 = 2 + 7

3λ2 + λ4 + 1
3λ5 (I)

x3 = 2− 1
3λ2 −

1
3λ5 (II)

x6 = 1− 13
3 λ2 − 4λ4 − 1

3λ5 (II)

After pivot :

(S)


x1 = 2 + 7

3λ2 + λ4 + 1
3λ5 (I)

x3 = 2− 1
3λ2 −

1
3λ5 (II)

λ6 = 1− 13
3 λ2 − 4λ4 − 1

3x5 (III)

From the former line describing the outgoing variable x6, i.e. (III), we extract the new
incoming variable x5 in terms of λi. Then, by substituing x5 in (II) and (I), we get the xi’s in
terms of the λi’s.

The new system is:

(S)


x1 = 3− 2λ2 − 3λ4 − λ6 (I)

x3 = 1 + 4λ2 + 4λ4 + λ6 (II)

x5 = 3− 13λ2 − 12λ4 − 3λ6 (II)

Let’s do the same with the score function:

before pivot z(x) = 14 + 2λ4 − λ5
after pivot z(x) = 14 + 2λ4 − (3− 12λ2 − 12λ4 − 3λ6)

= 11 + 13λ2 + 14λ4 + 3λ6

12.2.2.4 Iteration

The algorithm then iterates. It starts over with the detection of the pivot and repeats the next
steps: Danzig I, Danzig II, reparameterization, etc.

12.2.2.5 Stopping criteria

The algorithm stops when a new pivot point cannot be found, i.e. when all the marginal costs of
the score function z(x) are positive, i.e. when the ∆i ≥ 0.

Here in our example, after this first iteration, the score is z(x) = 11 + 13λ2 + 14λ4 + 3λ6. We
can see that all our marginal costs are positive. The Simplex algorithm is finished because it is
not possible to optimize the score any further.

12.3. The Simplex algorithm 115

The optimal feasible solution is extracted with every λi set to 0. It can be read in the last
parameterization:

The solution stands in the box:

(S)


x1 = 3

x3 = 1

x5 = 3

−2λ2 − 3λ4 − λ6 (I)

+4λ2 + 4λ4 + λ6 (II)

−13λ2 − 12λ4 − 3λ6 (II)

Just as the score can be read in:

z(x) = 11 + 13λ2 + 14λ4 + 3λ6

z(x) = 11

12.2.2.6 Notes

• With a little luck, this partitionment with base variables (x1, x3, x5) and off-base variables
(x2, x4, x6) = (λ2, λ4, λ6) might well have been chosen is the initial feasible solution and
help us save an iteration.
• The terminology lambda λ for the off-base variables is not always used, sometimes one

keeps the xi notation.

12.3 The Simplex algorithm

The Simplex algorithm consists in iterating the approach illustrated above, i.e. :

(E0) Find a first partitioning in base variables and off-base variables in such a way that
after the parameters (the off-base variables) are put to 0 we get a system of equa-
tions

• squared
• solvable (i.e. the det. of the matrix is different than 0)
• with solutions respecting the positivity constraints (for the base variables

Note: the search of the start point is very likely the most difficult part.

(E1) Detect an incoming variable (Danzig I)
All the off-base variables with a negative marginal cost are valid candidates.
However, we’ll always choose the one that has the highest possible marginal cost in
absolute value.

(E2) Detect the outgoing variable (Danzig II), i.e the one that is the fasted nullified
when rising the outgoing variable. The more the incoming variable rises, the more
the score is minimized, the more the outgoing variable might break a positivity
constraint.
We stop rising the incoming variable when the outgoing variable becomes null.

(E3) Run the pivot.
The goals is to

• Write the base variables in terms of the off-base variables (by substitution)
• Write the score function in terms of the off-base variables (by substitution)

116 Chapter 12. Algebraic Approach - The Simplex algorithm

(E4) Stop when it it not possible to optimize the score z(x) any further, i.e. when all the
marginal costs of the score ∆i are positive or null, i.e. when it is impossible to find
any new incoming variable.

12.3.1 Resumed form

The Simplex algorithm can be resumed this way:

• (A1) Find a start point
• (A2) Iterate on:

• Danzig I Greatest (absolute) λi strictly negatif in the score z(x)

• Danzig II The xi = 0 with the smallest possible λDanzigI strictly positif
• Pivot λDanzigI becomes xDanzigI , xDanzigII becomes λDanzigII
• Reparameterization Express all xi and z(x) in terms of λi

• (A3) Check the stop criteria (each λi positive or null in the score)

12.4 Notes

• The solution of the (LP) is mandatorily build starting with a base feasible solution. Depend-
ing on the size of the problem, chosing a base feasible solution randomly is impossible.
This issue is furtherly developed in chapter 14.

• Geometrical interpretation of the Simplex: The Simplex is a local iterative algorithm. Every
solution is on a vertex of the polytope formed by the hyperplans given by the constraint
equations system. The pivot / reparameterization from a base to another makes us move
from one vertex to an adjacent one having a better score.
The algorithm makes us move from the base vertex to the one in its neighbourhood with
the best score.

12.5 Practice

12.5.1 Exercise 5 : Algebraic Simplex

12.5.1.1 Instructions

Part I With the help of the algebraic Simplex,
solve the following (LP):

(LP)



min z(x) = −x1 − 2x2

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


−3x1 + 2x2 + x3 = 2

−x1 + 2x2 + x4 = 4

x1 + x2 + x5 = 5

xi ≥ 0 (positivity constraints)

Part II With the help of the algebraic Sim-
plex, solve the following (LP):

(LP)



max z(x) = x1 + 2x2

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


−3x1 + 2x2 ≤ 2

−x1 + 2x2 ≤ 4

x1 + x2 ≤ 5

xi ≥ 0 (positivity constraints)

12.5. Practice 117

Indications:

• (I1) Transform the max in min
• (I2) Transform inequalities in equalities using slack variable

(french : variable d’écart)

(See section 14.2 for help on (LP) transformation)

12.5.1.2 Solution

We can solve part I and part II in one shot by introducing the slack variables (x3 ,x3, x5) in part
II and by searcjing for a min instead of a max by inverting the score function. This way, both
parts of the instructions are equivalent

Initialization

A good approach is to try a base feasible solution that gives us as less work as possible.
We know the slack variables are present only once in each equation of the constraints system,
hence chosing them as base variables is a good choice for an initial solution.

We have 3 equations with 5 variables⇒We
need to take 2 variables out of the base, i.e.
as parameters.

We choose hence:

BV = (x3, x4, x5) OBV = (λ1, λ2)

This way we get the parameterized system
without much work:

(S)


x3 = 2 + 3λ1 − 2λ2 (I)

x4 = 4 + λ1 − 2λ2 (II)

x5 = 5− λ1 − λ2 (III)

z(λ) = −λ1 − 2λ2

Iteration 1

The incoming variable (Danzig I) is given by
the highest negative coefficient associated
to a λi in the score. here it is −2λ2, hence
λ2 comes in.

For λi = 0(i 6= 2) :

(I) x3 = 0 ⇔ 2− 2λ2 = 0 ⇔ λ2 = 1

(II) x4 = 0 ⇔ 4− 2λ2 = 0 ⇔ λ2 = 2

(III) x5 = 0 ⇔ 5− λ2 = 0 ⇔ λ2 = 5

The outgoing variable is the one that vio-
lates the first the positivity constraint when
the incoming variable rises, i.e. the one
that gives the smallest positive value for the
incoming variable.
In our case, x3 goes out.

This leads to the following pivot:

λ2 ↔ x3

We should now reparameterize the constraint system (S) and the score functions using the
new partitioning:

BV = (x2, x4, x5) OBV = (λ1, λ3)

118 Chapter 12. Algebraic Approach - The Simplex algorithm

We start by pivoting the variables in the for-
mer system:

(S)


λ3 = 2 + 3λ1 − 2x2 (I)

x4 = 4 + λ1 − 2x2 (II)

x5 = 5− λ1 − x2 (III)

z(λ) = −λ1 − 2x2

The line (I) is straightforward (as expected
since related to the outgoing variable):

(S)


x2 = 1 + 3

2λ1 −
1
2λ3 (I)

x4 = 4 + λ1 − 2x2 (II)

x5 = 5− λ1 − x2 (III)

z(λ) = −λ1 − 2x2

The others are rewriten by injecting (I)

(S)


x2 = 1 + 3

2λ1 −
1
2λ3 (I)

x4 = 4 + λ1 − 2(1 + 3
2λ1 −

1
2λ3) (II)

x5 = 5− λ1 − (1 + 3
2λ1 −

1
2λ3) (III)

z(λ) = −λ1 − 2(1 +
3

2
λ1 −

1

2
λ3)

Which is resolved to:

(S)


x2 = 1 + 3

2λ1 −
1
2λ3 (I)

x4 = 2− 2λ1 + λ3 (II)

x5 = 4− 5
2λ1 + 1

2λ3 (III)

z(λ) = −2− 4λ1 + λ3

Iteration 2

The incoming variable (Danzig I) is given by the
highest negative coefficient associated to a λi
in the score. here it is −4λ1, hence λ1 comes
in.

For λi = 0(i 6= 1) :

(I) x2 = 0 ⇔ 1 + 3
2λ1 = 0 ⇔ λ1 = −2

3 ≤ 0

(II) x4 = 0 ⇔ 2− 2λ1 = 0 ⇔ λ1 = 1 ≥ 0

(III) x5 = 0 ⇔ 4− 5
2λ1 = 0 ⇔ λ1 = 8

5 ≥ 0

The outgoing variable is the one that
violates the first the positivity constraint
when the incoming variable rises, i.e. the
one that gives the smallest positive value
for the incoming variable.
In our case, x4 goes out.

This leads to the following pivot:

λ1 ↔ x4

We should now reparameterize the constraint system (S) and the score functions using the
new partitioning:

BV = (x1, x2, x5) OBV = (λ3, λ4)

We start by pivoting the variables in the for-
mer system:

(S)


x2 = 1 + 3

2x1 −
1
2λ3 (I)

λ4 = 2− 2x1 + λ3 (II)

x5 = 4− 5
2x1 + 1

2λ3 (III)

z(λ) = −2− 4x1 + λ3

The line (II) is straightforward, we solve it
and invert it with (I):

(S)


x1 = 1 + 1

2λ3 −
1
2λ4 (I)

x2 = 1 + 3
2x1 −

1
2λ3 (II)

x5 = 4− 5
2x1 + 1

2λ3 (III)

z(λ) = −2− 4x1 + λ3

12.5. Practice 119

The others are rewriten by injecting (I)

(S)


x1 = 1 + 1

2λ3 −
1
2λ4 (I)

x2 = 1 + 3
2(1 + 1

2λ3 −
1
2λ4)−

1
2λ3 (II)

x5 = 4− 5
2(1 + 1

2λ3 −
1
2λ4) + 1

2λ3 (III)

z(λ) = −2− 4(1 +
1

2
λ3 −

1

2
λ4) + λ3

Which is resolved to:

(S)


x1 = 1 + 1

2λ3 −
1
2λ4 (I)

x2 = 5
2 + 1

4λ3 −
3
4λ4 (II)

x5 = 3
2 −

3
4λ3 + 5

4λ4 (III)

z(λ) = −6− 1λ3 + 2λ4

Iteration 3

The incoming variable (Danzig I) is given by the
highest negative coefficient associated to a λi
in the score. here it is 14λ3, hence λ3 comes
in.

For λi = 0(i 6= 3) :

(I) x1 = 0 ⇔ 1 + 1
2λ3 = 0 ⇔ λ3 = −2 ≤ 0

(II) x2 = 0 ⇔ 5
2 + 1

4λ3 = 0 ⇔ λ3 = −10 ≤ 0

(III) x5 = 0 ⇔ 3
2 −

3
4λ3 = 0 ⇔ λ3 = 2 ≥ 0

The outgoing variable is the one that
violates the first the positivity constraint
when the incoming variable rises, i.e. the
one that gives the smallest positive value
for the incoming variable.
In our case, x5 goes out.

This leads to the following pivot:

λ3 ↔ x5

We should now reparameterize the constraint system (S) and the score functions using the
new partitioning:

BV = (x1, x2, x3) OBV = (λ4, λ5)

We start by pivoting the variables in the for-
mer system:

(S)


x1 = 1 + 1

2x3 −
1
2λ4 (I)

x2 = 5
2 + 1

4x3 −
3
4λ4 (II)

λ5 = 3
2 −

3
4x3 + 5

4λ4 (III)

z(λ) = −6− 1x3 + 2λ4

The line (III) is straightforward, we solve it
easily as expected:

(S)


x1 = 1 + 1

2x3 −
1
2λ4 (I)

x2 = 5
2 + 1

4x3 −
3
4λ4 (II)

x3 = 2 + 5
3λ4 −

4
3λ5 (III)

z(λ) = −6− 1x3 + 2λ4

The others are rewriten by injecting (I)

(S)


x1 = 1 + 1

2(2 + 5
3λ4 −

4
3λ5)−

1
2λ4 (I)

x2 = 5
2 + 1

4(2 + 5
3λ4 −

4
3λ5)−

3
4λ4 (II)

x3 = 2 + 5
3λ4 −

4
3λ5 (III)

z(λ) = −6− 1(2 +
5

3
λ4 −

4

3
λ5) + 2λ4

Which is resolved to:

(S)


x1 = 2 + 1

3λ4 −
2
3λ5 (I)

x2 = 3− 1
3λ4 −

1
3λ5 (II)

x3 = 2 + 5
3λ4 −

4
3λ5 (III)

z(λ) = −8 +
1

3
λ4 +

4

3
λ5

Stop

120 Chapter 12. Algebraic Approach - The Simplex algorithm

Since all the λi coefficients in the score z(λ)

are positive, we can not make the score any
better for any new partitioning. The minimum
is hence −8 and it is obtained when the off-
base variables are 0. We get the values of
the remaining xi from (S):

(The other xi are equal to 0 since they are
the parameters)

x1 = 2 + 1
3λ4 −

2
3λ5 = 2

x2 = 3− 1
3λ4 −

1
3λ5 = 3

x3 = 2 + 5
3λ4 −

4
3λ5 = 3

Result

arg min z(x) = (x1, x2, x3, x4, x5) = (2, 3, 2, 0, 0). (One can check that the constraints are well
satisfied) with as core of -8.

12.5.2 Exercise 6 : Algebraic Simplex

12.5.2.1 Instructions

With the help of the algebraic Simplex, solve
the following (LP):

(LP)



max z(x) = x1

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


x1 − x2 ≤ 1

2x1 − x2 ≤ 2

x1 + x2 ≤ 7

xi ≥ 0 (positivity constraints)

Indications:

• Transform max in min
• Transform inequalities in equalities

usign slack variables

(See section 14.2 for help on (LP) transfor-
mation)

12.5.2.2 Solution

We start by transform the (LP) in standard
form (see section 14.2 by introducing slack
variables in order to transform the inequali-
ties iinto equalities.

(LP)



min z(x) = −x1

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


x1 − x2+x3 = 1

2x1 − x2+x4 = 2

x1 + x2+x5 = 7

xi ≥ 0 (positivity constraints)

Initialization

We have 3 equations with 5 variables⇒We
need to take 2 variables out of the base, i.e.
as parameters.

We choose hence:

BV = (x3, x4, x5) OBV = (λ1, λ2)

This way we get the parameterized system
without much work:

(S)


x3 = 1− λ1 + λ2 (I)

x4 = 2− 2λ1 + λ2 (II)

x5 = 7− λ1 − λ2 (III)

z(λ) = −1λ1

Iteration 1

12.5. Practice 121

The incoming variable (Danzig I) is given by
the highest negative coefficient associated
to a λi in the score. here it is −1λ1, hence
λ1 comes in.

For λi = 0(i 6= 2) :

(I) x3 = 0 ⇔ 1− λ1 = 0 ⇔ λ1 = 1 ≥ 0

(II) x4 = 0 ⇔ 2− 2λ1 = 0 ⇔ λ1 = 1 ≥ 0

(III) x5 = 0 ⇔ 7− λ1 = 0 ⇔ λ1 = 7 ≥ 0

The outgoing variable is the one that vio-
lates the first the positivity constraint when
the incoming variable rises, i.e. the one
that gives the smallest positive value for the
incoming variable.
In our case, we have the choice (either x3 or
x4). Let’s say x3 goes out.

This leads to the following pivot:

λ1 ↔ x3

We should now reparameterize the constraint system (S) and the score functions using the
new partitioning:

BV = (x1, x4, x5) OBV = (λ2, λ3)

We start by pivoting the variables in the for-
mer system:

(S)


λ3 = 1− x1 + λ2 (I)

x4 = 2− 2x1 + λ2 (II)

x5 = 7− x1 − λ2 (III)

z(λ) = −1x1

The line (I) is straightforward (as expected
since related to the outgoing variable):

(S)


x1 = 1 + λ2 − λ3 (I)

x4 = 2− 2x1 + λ2 (II)

x5 = 7− x1 − λ2 (III)

z(λ) = −1x1

The others are rewriten by injecting (I)

(S)


x1 = 1 + λ2 − λ3 (I)

x4 = 2− 2(1 + λ2 − λ3) + λ2 (II)

x5 = 7− (1 + λ2 − λ3)− λ2 (III)

z(λ) = −1(1 + λ2 − λ3)

Which is resolved to:

(S)


x1 = 1 + λ2 − λ3 (I)

x4 = −λ2 + 2λ3 (II)

x5 = 6− 2λ2 + λ3 (III)

z(λ) = −1− 1λ2 + λ3

Iteration 2

The incoming variable (Danzig I) is given by the
highest negative coefficient associated to a λi
in the score. here it is −1λ2, hence λ2 comes
in.

For λi = 0(i 6= 1) :

(I) x1 = 0 ⇔ 1 + λ2 = 0 ⇔ λ2 = −1 ≤ 0

(II) x4 = 0 ⇔ −λ2 = 0 ⇔ λ2 = 0
−1 = 0 ≥ 0

(III) x5 = 0 ⇔ 6− 2λ2 = 0 ⇔ λ2 = 3 ≥ 0

The outgoing variable is the one that
violates the first the positivity constraint
when the incoming variable rises, i.e. the
one that gives the smallest positive value
for the incoming variable.
In our case, x4 goes out.

This leads to the following pivot:

λ2 ↔ x4

Note: the above is an interesting case. The line (II) has been retained. This seems coherent

122 Chapter 12. Algebraic Approach - The Simplex algorithm

whith what has been introduced before. We’ll see in the next iteration that this is not always the
case and we’ll provide the user with a rule to handle such situations.

We should now reparameterize the constraint system (S) and the score functions using the
new partitioning:

BV = (x1, x2, x5) OBV = (λ3, λ4)

We start by pivoting the variables in the for-
mer system:

(S)


x1 = 1 + x2 − λ3 (I)

λ4 = −x2 + 2λ3 (II)

x5 = 6− 2x2 + λ3 (III)

z(λ) = −1− 1x2 + λ3

The line (II) is straightforward (as expected
since related to the outgoing variable):

(S)


x1 = 1 + x2 − λ3 (I)

x2 = 2λ3 − λ4 (II)

x5 = 6− 2x2 + λ3 (III)

z(λ) = −1− 1x2 + λ3

The others are rewriten by injecting (I)

(S)


x1 = 1 + (2λ3 − λ4)− λ3 (I)

x2 = 2λ3 − λ4 (II)

x5 = 6− 2(2λ3 − λ4) + λ3 (III)

z(λ) = −1− 1(2λ3 − λ4) + λ3

Which is resolved to:

(S)


x1 = 1 + λ3 − λ4 (I)

x2 = 2λ3 − λ4 (II)

x5 = 6− 3λ3 + 2λ4 (III)

z(λ) = −1− 1λ3 + λ4

Iteration 3

The incoming variable (Danzig I) is given by the
highest negative coefficient associated to a λi
in the score. here it is −1λ3, hence λ3 comes
in.

For λi = 0(i 6= 1) :

(I) x1 = 0 ⇔ 1 + λ3 = 0 ⇔ λ3 = −1 ≤ 0

(II) x2 = 0 ⇔ 2λ3 = 0 ⇔ λ3 = 0
+2 = 0 ≥ 0

(III) x5 = 0 ⇔ 6− 3λ3 = 0 ⇔ λ3 = 2 ≥ 0

The outgoing variable is the one that
violates the first the positivity constraint
when the incoming variable rises, i.e. the
one that gives the smallest positive value
for the incoming variable.
In our case, x5 goes out.

This leads to the following pivot:

λ3 ↔ x5

Note: Following what has been said after the previous iteration, we can see that we have here
a similar case, i.e. λ3 = 0. However, contrary to what we have done at the previous iteration, we
don’t chose here the λ3 parameter.
The rule is as follows:

• If the resolution of the equation lead to −0, we take that parameter.
• If the resolution of the equation lead to +0, we do not take that parameter.

When the denominator is negative, one has to take that parameter as outgoing variable. When
the denominator is positive, one has to take another variable.

12.5. Practice 123

One can actually confirm the relevance of this rule by seing that chosing x5 actually is the
best choice in this case. Chosing the line (III) makes us make a bigger step without violating
the p.c. on x2, as confirmed by:

x2 = 2λ3 − λ4 with λi = 0(i 6= 3) and λ3 = 2, we get:

x2 = +2(2)− 0 = +4 ≥ 0

We should now reparameterize the constraint system (S) and the score functions using the
new partitioning:

BV = (x1, x2, x3) OBV = (λ4, λ5)

We start by pivoting the variables in the for-
mer system:

(S)


x1 = 1 + x3 − λ4 (I)

x2 = 2x3 − λ4 (II)

λ5 = 6− 3x3 + 2λ4 (III)

z(λ) = −1− 1x3 + λ4

The line (II) is straightforward (as expected
since related to the outgoing variable):

(S)


x1 = 1 + x3 − λ4 (I)

x2 = 2x3 − λ4 (II)

x3 = 2 + 2
3λ4 −

1
3λ5 (III)

z(λ) = −1− 1x3 + λ4

The others are rewriten by injecting (I)

(S)


x1 = 1 + (2 + 2

3λ4 −
1
3λ5)− λ4 (I)

x2 = 2(2 + 2
3λ4 −

1
3λ5)− λ4 (II)

x3 = 2 + 2
3λ4 −

1
3λ5 (III)

z(λ) = −1− 1(2 +
2

3
λ4 −

1

3
λ5) + λ4

Which is resolved to:

(S)


x1 = 3− 1

3λ4 −
1
3λ5 (I)

x2 = 4 + 1
3λ4 −

2
3λ5 (II)

x3 = 2 + 2
3λ4 −

1
3λ5 (III)

z(λ) = −3 +
1

3
λ4 +

1

3
λ5

Stop

Since all the λi coefficients in the score z(λ)

are positive, we can not make the score any
better for any new partitioning. The minimum
is hence −8 and it is obtained when the off-
base variables are 0. We get the values of
the remaining xi from (S):

(The other xi are equal to 0 since they are
the parameters)

x1 = 3− 1
3λ4 −

1
3λ5

x2 = 4 + 1
3λ4 −

2
3λ5

x3 = 2 + 2
3λ4 −

1
3λ5

Result

arg min z(x) = (x1, x2, x3, x4, x5) = (2, 3, 2, 0, 0). (One can check that the constraints are well
satisfied) with a score of -3.

CHAPTER 13

Tabular Approach - The Simplex
algorithm

Contents
13.1 Purpose . 125

13.2 Illustration example . 126

13.2.1 base feasible solution . 126

13.2.2 Iteration 1 . 127

13.2.3 Pivot Point . 128

13.2.4 Iteration 2 . 129

13.2.5 Stop and results . 130

13.3 Why does the tabular contrain the opposite of the score ? 131

13.3.1 Representaiton of the initial LP . 131

13.3.2 Integrating the score into the constraint system 131

13.4 Convergence . 132

13.5 Practice . 133

13.5.1 Exercise 7 : Simplex Tabular approach . 133

13.5.2 Exercise 8 : Simplex Tabular approach . 135

13.1 Purpose

The objectif of the tabular approach is to provide a quicker form (and easier to implement as an
algorithm) of resolution for the Simpley. The only issue is that it is even more a magic recipe
than the algebraic way.

One should just keep in mind that it is actually exactly the same that the algebraic way except
it happens in a shorter way:

• the variable names are replaced by matrix indices
• The pivot and reparameterization happen by elementary row operations on the matrix.

126 Chapter 13. Tabular Approach - The Simplex algorithm

13.2 Illustration example

We’ll use the following (LP) as an illustration example:

(LP)



min z(x) = 2x1 − 3x2 + 4x3 − x4 + 0x5 + 0x6 + 0x7

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


x1 − x2 + 2x3 − 2x4 + 1x5 + 0x6 + 0x7 = 7

−5x1 + 3x2 − 2x3 + x4 + 0x5 + 1x6 + 0x7 = 1

3x1 + x2 + 4x3 + 5x4 + 0x5 + 0x6 + 1x7 = 9

xi ≥ 0 (positivity constraints)

13.2.1 base feasible solution

Let’s take:

(x5, x6, x7) as base variables

(x1, x2, x3, x4) as off-base variables

One should not that this choice is not anectodic:

• the score function z(x) is already almost expressed in a linear combination of the off-base
variables.
• The bae variables are already almost expressed in terms of the off-base variables.

One should also not that this is a demo case, in practice the choice of the base is pretty tricky
and a specific field on its own.

The simplex tabular associated with the illustration case posess an initial feasible solution
the following partioning:

Notes:

• One should note the identity matrix in the red part of the base variables. There is nothing
to compute, the coefficients depend directly from the choice of the base variables.
• Also note the null marginal costs.
• The map is useful to avoid the need to search for the "1" on the row.

13.2. Illustration example 127

13.2.2 Iteration 1

13.2.2.1 Danzig Formulas

Let m be the number of variables and n be the number of constraints

Danzig I criteria - the incomming variable is λje with

je = arg min
j∈[1,m]

(∆j < 0) with column index = variable index ∈ [1,m]

Danzig II criteria - the outgoing variable is xis with

is = arg min
i∈[1,n]

(
b̄i
¯aije
≥ 0

)
with ¯aije > 0 line index ∈ [1, n]

js = map[is] with varable index ∈ [1,m]

• map is a function that gives the index of the base variable j associated to the line i, where
associated means "on this line, xj is expressed as a linear combination of the off-base
variables".
• Whenever all the ∆j ≥ 0, the stop criteria is reached

13.2.2.2 Danzig I criteria

The incomming variable is the one with the highest negative marginal cost.

The coefficients of the λi parameters are read in the last line of the tabular. In the tabular
above, the parameter with the highest negative coefficient is λ2.

Hence the incomming variable, i.e. the Danzig I criteria is λ2 with ∆(λ2) = −3.

13.2.2.3 Danzig II criteria

The outgoing variable is the one that is the most restrictive for the incomming variable to come
in. The way this variable is extracted consists in putting all coefficient to 0 in the equation
system and keeping only the constants as well as the coefficients of the Danzig I critera, i.e. the
incomming variable.

(Recall Danzig II presentation in 12.2.2.1)

One should not that resolving the equations in terms of the Danzig I criteria by putting each
and every coefficient at 0 except the ones of the incomming variable and the constants is like
considering only the column of the Danzig I parameter and the column of the constants b.

One can build a new column into the array giving directly the searched result for b̄i/āij as
shown on the next reepresentation on the tabular. For Danzig II, we are looking for the most
restrictive (i.e. smallest positive) ratio b̄i/āij .
(if it is null, then āij must be strictly positive)

128 Chapter 13. Tabular Approach - The Simplex algorithm

Hence the outgoinf variable, i.e. the Danzig II criteria is x6.

13.2.3 Pivot Point

13.2.3.1 Reparameterization

As an equation sytem doesn’t wary when basic lines operations are applied, we are enabled to
perform the reparameterization using these operations (see 10.3.1).

Just recall the initial situation:

• The identity matrix in the simplex tabular under the base variables
• Null marginal costs in the score under the base variables

The goal is to reestablish this situation after the base change, i.e. these two properties needs to
be respected under the base-variables (x2, x5, x7)

Step 1 : the pivot should be 1. Divide the line by 3:

Step 2 : We want 0 everywhere else in the column of the pivot:

13.2. Illustration example 129

Step 3 : Express marginal costs exclusively with off-base variables:

The reparameterization is finished, we can start a new iteration since there are still negative
marginal costs in the score.
One should note that a maximization problem would considere a stop criteria when the marginal
costs, therefor named marginal profits are all negatives or null.

13.2.4 Iteration 2

We’ll run the iteration 2 a bit faster since we have now seen the principles.

Here as ∆(λ1) = −1 < 0, we can still minimize the score z(x) further by changing the base.
The Danzig I criteria λ1 comes in.
Then we compute a new b̄i/āij column and find out the Danzig II critera, x7 goes out.

Step 1 : the pivot should be 1.

130 Chapter 13. Tabular Approach - The Simplex algorithm

Step 2 and 3 : We want 0 everywhere else in the column of the pivot and the marginal costs
should be expressed exclusively with off-base variables:

13.2.5 Stop and results

As we do not have any more negative coefficient in the score after the reparameterization, the
algorithm stops. We have found the optimum vertex of the polytop.

The cell z(x) (the cell on the bottom-most right-most part of the tabular), i.e. the intersection
of the (b̄i) column and the ∆ row contains the opposite of the result with:

λi = 0

xmapBase[i] = b̄i

i.e. the values for the base variables xj are given by the column (b̄i) and the values of the
off-base variables are all 0.

Solution :

x1 =
13

7
x2 =

24

7
x3 = 0 x4 = 0 x5 =

60

7
x6 = 0 x7 = 0

min z(x) = −46

7

One can check that the solution indeed respects the constraints system.

13.3. Why does the tabular contrain the opposite of the score ? 131

13.3 Why does the tabular contrain the opposite of the score ?

In our example the tabular Simplex stops in the following situation :

In the dark cell is the opposite of the score and not the score, why ?

13.3.1 Representaiton of the initial LP

The initial (LP) was:

(LP)



min z(x) = 2x1 − 3x2 + 4x3 − x4 + 0x5 + 0x6 + 0x7

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


x1 − x2 + 2x3 − 2x4 + x5 = 7

−5x1 + 3x2 − 2x3 + x4 + x6 = 1

3x1 + x2 + 4x3 + 5x4 + x7 = 9

xi ≥ 0 (positivity constraints)

13.3.2 Integrating the score into the constraint system

The trick consists in considering z(x) as an additional variable. The relation between z(x) can
hence be written:

2x1 − 3x2 + 4x3 − x4 + 0x5 + 0x6 + 0x7 − z = 0

Which can then be integrated in the contraint system S as a constraint binding z to thre other
variables

(S)


x1 − x2 + 2x3 − 2x4 + x5 = 7

−5x1 + 3x2 − 2x3 + x4 + x6 = 1

3x1 + x2 + 4x3 + 5x4 + x7 = 9

2x1 − 3x2 + 4x3 − x4 + 0x5 + 0x6 + 0x7 − z = 0

The associated Simplex tabular hence is:

132 Chapter 13. Tabular Approach - The Simplex algorithm

Thanks to this trick, all the lines of the tabular have the same status and can be manipulated
together using elementary row operations.
The weigth of z is -1 which explains why one needs to considere the opposite of the score in the
yellow cell..

Hence, when the simplex is finished:

the score is −46/7 and not 46/7 because the last lin of the simpley resolves to the following
equation:

0x1 + 0x2 + 5λ3 + 3λ4 + 0x5 +
11

4
λ6 +

9

14
λ7 − z =

46

7
withλi = 0⇒

− z =
46

7
⇒ z = −46

7

13.4 Convergence

13.4.0.1 Degeneration

The feasible initial solution degenerates whenever at least one of the base variable takes the
value 0. In other terms, an initial solution degenerates whenever at lest of the of the component
of the b̄i vector is 0.

13.4.0.2 Convergence and cycling

If during the Simplex algorithm each and every of the encountered base is not degenerated,
then the algorithm ends with a finished number of iterations. Otherwise, a cacling process might

13.5. Practice 133

appear sometimes and the algorithm might never converge.

Anti-cycling measures

There is a simple mesure against the cycling issue. It however decreases significantly the
performances and needs thus to be used with great care:

• Danzig I takes the littlest index for which the marginal cost is negative
• Danzig II takes the littlest index in case of equality.

13.5 Practice

13.5.1 Exercise 7 : Simplex Tabular approach

Solve the follofing (LP) using the tabular al-
gorithm for the Simplex:

(LP)



max z(x) = x1 + 2x2

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


−3x1 + 2x2 ≤ 2

−x1 + 2x2 ≤ 4

x1 + x2 ≤ 5

xi ≥ 0 (positivity constraints)

First we need to convert it under standard
form:

(LP)



min z(x) = −x1 − 2x2

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


−3x1 + 2x2 + x3 = 2

−x1 + 2x2 + x4 = 4

x1 + x2 + x5 = 5

xi ≥ 0 (positivity constraints)

(See section 14.2 for help on (LP) transformation)

13.5.1.1 Solution

Tabular representation + Danzig Iteration 1

Reparameterization iteration 1 + Danzig Iteration 2

134 Chapter 13. Tabular Approach - The Simplex algorithm

Reparameterization iteration 2 + Danzig Iteration 3

Reparameterization iteration 3

Which gives us as result:

arg min z(x) = (2, 3, 2, 0, 0, 0)

min z(x) = −8

13.5. Practice 135

13.5.2 Exercise 8 : Simplex Tabular approach

Solve the follofing (LP) using the tabular al-
gorithm for the Simplex:

(LP)



max z(x) = x1

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


x1 − x2 ≤ 1

2x1 − x2 ≤ 2

x1 + x2 ≤ 7

xi ≥ 0 (positivity constraints)

First we need to convert it under standard
form:

(LP)



min z(x) = −x1

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


x1 − x2 + x3 = 1

2x1 − x2 + x4 = 2

x1 + x2 + x5 = 7

xi ≥ 0 (positivity constraints)

(See section 14.2 for help on (LP) transformation)

13.5.2.1 Solution

Tabular representation + Danzig Iteration 1

Reparameterization iteration 1 + Danzig Iteration 2

Reparameterization iteration 2 + Danzig Iteration 3

136 Chapter 13. Tabular Approach - The Simplex algorithm

Reparameterization iteration 3

Which gives us as result:

arg min z(x) = (3, 4, 2, 0, 0, 0)

min z(x) = −3

CHAPTER 14

Simplex - Additional concerns

Contents
14.1 Lack of a feasible initial solution . 137

14.1.1 Motivation . 137
14.1.2 The artificial variables algorithm . 137

14.2 (LP) transformations . 138
14.2.1 Limitations . 138
14.2.2 parades . 139
14.2.3 Canonical form - definition . 141

14.3 Simplex using R . 141
14.4 Practice . 142

14.4.1 Exercise 4 : transformation . 142

14.1 Lack of a feasible initial solution

14.1.1 Motivation

One should note that the simpley might be an iterative algorithm, it still need a feasible initial
solution to start. In practice, chosing a feasible initial solution is far from easy.

Whenever an initial solution doesn’t appear easily, one needs to chose a solution amongst
the (n m)t possible base one that is feasible. That search can be very long.
There are m variables and and n constraints with m > n, one need to chose n base variables
amongst the m available hoping the squared sub-system of linear equations posess a solution,
which will be the case whenever the matrixs is inversible. That inversibility property is very costy
to check and doesn’t apply to all the bases, far from it!

For this reason, there is an algorithm that helps finding a base feasible solution.

14.1.2 The artificial variables algorithm

14.1.2.1 Idea

The idea is to put the (LP) system in a larger dimensions space by adding artificial variables in
such a way that a feasible initial solution becomes obvious. The augemented (LP) will need to

138 Chapter 14. Simplex - Additional concerns

posess strong relations with the initial (LP) in order for the work performed on the augmented
system to be appliable on the initial system.
For instance, whenever the augmented (LP) posesses a feasible initial solution where all artifi-
cial variables are null (0) then thre relation becomes obvious.

14.1.2.2 The two-phase algorithm

Let’s considere the following (LP):

(LP)


min z(x) =

∑m
j=1 cjxj

w.r.

∣∣∣∣∣
∑m

j=1 aijxj = bi

xj ≥ 0 (positivity constraints)

Let’s asume this (LP) doesn’t have an obvi-
ous feasible initial solution

So we build the following augmented (LP)

(LPA)


min

∑n
i=1 vi

w.r.

∣∣∣∣∣
∑m

j=1 aijxj + vi = bi

xj ≥ 0, vi ≥ 0 (positivity constraints)

Each constraint is augmented by an artificial variable vi and the function to be minimized has
been replaced by the sum of all artificial variables. This choice of augmented (LP) is based on
the following property:

(LP) pos. a feasible initial solution⇔ (LPA) pos. a feasible optimal solution where
n∑
i=1

vi = 0

One should note that this doesn’t provide an optimal solution for (LP), only a feasible initial
solution.

14.1.2.3 Caution

An (LP) doesn’t posess any feasible initial solution if

• The feasible optimum solution if (LPA doesn’t have a null score (=0).
• The base variables of the optimal solution of (LPA contains any artificial variable. In this

case one might want to try additionnal pivots.

14.2 (LP) transformations

14.2.1 Limitations

The Simplex algorithm we have seen is only able to handle (LP) under Standard form. We
have often need to transform the given problem intro its standard form before being able apply
the algorithm on it.

The standard form of an (LP) is as follows:

14.2. (LP) transformations 139

(LP)


min z(x) =

∑m
j=1 cjxj

w.r.

∣∣∣∣∣
∑m

j=1 aijxj=bi i ∈ [1, n] with bi > 0

xj ≥ 0 (positivity constraints)

This can seem very limited at first, due to the lack fo support for greater than or smaller than
constraints and the support of minimization problems only. But it actually is not since there are
parades to handle the other cases.

14.2.2 parades

For the situation that doesn’t match the standard form, there are technics to be used to bring the
problem to its standard form.

14.2.2.1 Slack variables

(in french: variables d’écarts)

A greater than constraint:

Let’s imagine a constraint of (S) under a non-standard form, pour the i-th constraint:
m∑
j=1

aijxj ≥ bi (non standard form)

In order to get it under standars form, one simply adds a slack variable si{∑m
j=1 aijxj − si = bi (standard form)

si > 0

This is possible because as we have seen:

a ≥ b⇔ a− ε = b with ε ≥ b

A smaller than constraint:

The same thing applies for the following case:
m∑
j=1

aijxj ≤ bi (non standard form)

In order to get it under standars form, one simply adds a slack variable si{∑m
j=1 aijxj + si = bi (standard form)

si > 0

140 Chapter 14. Simplex - Additional concerns

This is possible because as we have seen:

a ≥ b⇔ a− ε = b with ε ≥ b

14.2.2.2 Maximization problem

In case we are facing a maximization problem instead of a minimization problem, there are two
strategies:

Strategy 1:

One simply applies the Simplex as usual on the opposite of f , then invert the sign of the solution,
because

max(f) = −min(−f) arg max(f) = arg min(−f)

Strategy 2:

One can also change the Danzig I criteria and take as incoming variable the one that has the
highest positive marginal profit. Whenever all marginal profits are positive or null, the algorithm
is finished.

14.2.2.3 Lack of a positivity constraint

Whenever one of the xi variable doesn’t posess a positivity constraint, it is replaced by two
variables, each of them posessis a positivity constraint :

xi ∈ R⇔


xj = uj − vj
uj ≥ 0

vj ≥ 0

14.2.2.4 Number bi negative

Whenever one of the constraint has the form:

m∑
j=1

aijxj ≥ bj with bj < 0 (non standard form)

One can simply multiply the inequation by −1 and the right-side member becomes positive

−
m∑
j=1

aijxj≤ −bj

14.3. Simplex using R 141

14.2.3 Canonical form - definition

An (LP) in Canonical form is as follows:

(LP)


min z(x) =

∑m
j=1 cjxj

w.r.

∣∣∣∣∣
∑m

j=1 aijxj≥bi i ∈ [1, n] with bi > 0

xj ≥ 0 (positivity constraints)

In order to resolve an (LP) in canonical form, one simply needs transform in under standard
form by adding slack variables. These slack variables doesn’t appear in the score but only one
time each in the constraints. As such they can be part of a feasible initial solution of the standard
(LP)

14.3 Simplex using R

Solving the simplex with R happens this way:

Let’s assume we face a problem expressed
this way:

(LP)



max |min z(x) = at · x

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


A1 · x ≤ b1t

A2 · x ≥ b2t

A3 · x = b3t

xi ≥ 0 (p.c.)

This problem is solved with R using the fol-
lowing call:

simplex(a,
A1 = NULL, b1 = NULL,
A2 = NULL, b2 = NULL,
A3 = NULL, b3 = NULL,
maxi = FALSE,
n.iter = n + 2 * m,
eps = 1e-10)

The parameters have the following meanings

a A vector of length n which gives the coefficients of the objective function.
A1 An m1 by n matrix of coefficients for the "<=" type of constraints.
b1 A vector of length m1 giving the right hand side of the "<=" constraints. This

argument is required if A1 is given and ignored otherwise. All values in b1
must be non-negative.

A2 An m2 by n matrix of coefficients for the ">=" type of constraints.
b2 A vector of length m2 giving the right hand side of the ">=" constraints. This

argument is required if A2 is given and ignored otherwise. All values in
b2 must be non-negative. Note that the constraints x >= 0 are included
automatically and so should not be repeated here.

A3 An m3 by n matrix of coefficients for the equality constraints.
b3 A vector of length m3 giving the right hand side of equality constraints. This

argument is required if A3 is given and ignored otherwise. All values in b3
must be non-negative.

142 Chapter 14. Simplex - Additional concerns

maxi A logical flag which specifies minimization if FALSE (default) and maximiza-
tion otherwise. If maxi is TRUE then the maximization problem is recast as
a minimization problem by changing the objective function coefficients to
their negatives.

n.iter The maximum number of iterations to be conducted in each phase of the
simplex method. The default is n+ 2 ∗ (m1 +m2 +m3).

eps The floating point tolerance to be used in tests of equality.

14.4 Practice

14.4.1 Exercise 4 : transformation

Transform the following (LP)s under standard form

14.4.1.1 Part I

Original (LP)

(LP)



min z(x) = 6x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


31 + 2x2 ≥ 18

2x1 + 4x2 = 20

2x2 ≤ 8

xi ≥ 0 (positivity constraints)

standard form:

(LP)



min z(x) = 6x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


31 + 2x2−s1 = 18

2x1 + 4x2 = 20

2x2+s2 = 8

xi ≥ 0, sj ≥ 0 (p.c.)

14.4.1.2 Part II

Original (LP)

(LP)


max z(x) = x1 + 2x2

w.r.

∣∣∣∣∣∣∣∣
(S)

{
3x1 + 2x2 ≤ 40

x1 − x2 ≥ 30

xi ≥ 0 (positivity constraints)

standard form:

(LP)


minz(x) = −x1−2(u1 − v1)

w.r.

∣∣∣∣∣∣∣∣
(S)

{
3x1 + 2(u1 − v1) + s1 = 40

x1 − (u1 − v1)− s2 = 30

xi ≥ 0, sj ≥ 0, u1 ≥ 0, v1 ≥ 0 (p.c.)

Part III

Integer linear Programming

CHAPTER 15

Integer Linear programming

Contents
15.1 Introduction . 145

15.1.1 Example . 145

15.2 Differences with (LP) . 146
15.2.1 Different results . 146

15.2.2 Even more different . 147

15.1 Introduction

Thus far we have been dealing with models in which the variables can take on real values, for
example a solution value of 7.3 is perfectly fine. But the variables in some models are restricted
to taking only integer or discrete values. You can assign 6 or 7 people to a team, for example, but
not 6.3 people; or you can choose to make a transistor from silicon dioxide or gallium arsenide,
but not some mixture

If the unknown variables are all required to be integers, then the (LP) problem is called an
integer programming (IP) or integer linear programming (ILP) problem.
In contrast to linear programming, which can be solved efficiently in the worst case, integer
programming problems are in many practical situations (those with bounded variables) NP-hard.
If only some of the unknown variables are required to be integers, then the problem is called a
mixed integer programming (MIP) problem. These are generally also NP-hard.

There are however some important subclasses of IP and MIP problems that are efficiently
solvable, most notably problems where the constraint matrix is totally unimodular and the right-
hand sides of the constraints are integers.

Advanced algorithms for solving integer linear programs include:

• branch and bound
• cutting-plane method
• branch and cut

15.1.1 Example

We’ll see now a typical example of a problem expressed as an (ILP).

146 Chapter 15. Integer Linear programming

A company provides its client with various raw materials it can cut under several forms. The
clients are placing order to the company indicating the various forms and the quantities of each
forms it wants.

The variables are as follows:

• There are a total of m commands
• There are a total of n forms
• The amount of pieces (# forms × #

pieces by form) is qj(j = 1..m)

• The amount of form i is xi(i = 1..n)

• The cost to manufacture form i is
ci(1 = 1..n)

• the amount of pieces for form i in com-
mand j is aij(i = 1..m, j = 1..n)

The problem is formalized this way:

(ILP)


min z(x) =

∑b
i=1 cixi

w.r.

∣∣∣∣∣
∑n

i=1 aijxj ≥ qj ∀j = 1..m

xi ≥ 0 ∀i = 1..n (positivity constraints)

Other example involves:

• Affectation of frequencies in broadband mobile network
• Affectations of flight lines to airway companies
• ...

15.2 Differences with (LP)

15.2.1 Different results

(ILP) problems cannot be solve as easily as (LP) problems. In addition, solving the same
problem with rationnal numbers or integer numbers can lead to significantly different results.
Let’s see an illustration:

Considere the following problem:

(LP)


max z(x) = x1 + x2

w.r.

∣∣∣∣∣∣∣∣
(S)

{
−2x1 + 2x2 ≥ 1

−8x1 + 10x2 ≤ 13

xi ≥ 0 (positivity constraints)

Solving the problem in rationnal number
yields:

x1 = 4, x2 =
9

2

15.2. Differences with (LP) 147

A naive and wrong approach one could
think of would be to round the values to the
closest integer, for instance:

x1 = 4, x2 = 5

but this breaks the following constraint:

−8x1 + 10x2 ≤ 13⇒
−8 · 4 + 10 · 5 = −32 + 50 = 16 > 13

Rounding is not a good idea

As one can sees on the schema above, using integer numbers, the solution to the (ILP) is
significantly different than the solution of the (LP):

x1 = 1, x2 = 2

15.2.2 Even more different

This new schema on the left underlines
another issue. While a problem likely have
solution in rationnal numbers when the
constraint system make it possile, there
is not guarantee it will necessarily have a
solution in integer number.

The problem illustrated here has a system of
constraints that binds the solution between
the adjacent integer number. While this sys-
tem has a solution in rationnal numbers, it
has none in integer numbers.

CHAPTER 16

The Branch and Bound algorithm

Contents
16.1 Introduction . 149

16.2 Principle . 150

16.2.1 Steps . 150

16.3 Illustration example . 150

16.3.1 Root (ILP) . 151

16.3.2 (ILP) 1 - Root→ Left . 152

16.3.3 (ILP) 3 - Root→ Left→ Left . 152

16.3.4 (ILP) 4 - Root→ Left→ Right . 153

16.3.5 (ILP) 2 - Root→ Right . 153

16.3.6 (ILP) 6 - Root→ Right→ Right . 154

16.3.7 (ILP) 5 - Root→ Right→ Right . 154

16.3.8 (ILP) 7 - Root→ Right→ Left→ Left . 155

16.3.9 (ILP) 8 - Root→ Right→ Left→ Right . 155

16.4 The Branch-and-Bound method . 157

16.4.1 General Form . 157

16.4.2 Assumptions . 157

16.5 Algorithm of Branch-and-Bound . 157

16.6 Practice . 159

16.6.1 Exercise 1 : Branch & Bound - Simplex . 159

16.6.2 Exercise 2 : The Knapsack problem . 162

16.6.3 Exercise 3 : an (ILP) as a binary problem (Knaspack 163

16.1 Introduction

Branch and bound (BB or B & B) (in french: "Méthode par séparation et évaluation") is a general
algorithm for finding optimal solutions of various optimization problems, especially in discrete and
combinatorial optimization.
It consists of a systematic enumeration of all candidate solutions, where large subsets of fruitless
candidates are discarded massively, by using upper and lower estimated bounds of the quantity
being optimized.

150 Chapter 16. The Branch and Bound algorithm

The method was first proposed by A. H. Land and A. G. Doig in 1960 for discrete programming
and is the basic workhorse technique for solving integer and discrete programming problems.
The method is based on the observation that the enumeration of integer solutions has a tree
structure.

16.2 Principle

This is the divide and conquer method. We divide a large problem into a few smaller ones. (This
is the branch part.) The conquering part is done by estimate how good a solution we can get
for each smaller problems (to do this, we may have to divide the problem further, until we get a
problem that we can handle), that is the bound part.

We will use the linear programming relaxation to estimate the optimal solution of an integer
programming. For an integer programming model (P) , the linear programming model we get by
dropping the requirement that all variables must be integers is called the linear programming
relaxation of P.

16.2.1 Steps

The steps are:

1. Divide a problem into subproblems

2. Calculate the LP relaxation of a subproblem (using for instance The Simplex algorithm)

• The LP problem has no feasible solution, done;
• The LP problem has an integer optimal solution; done. Compare the optimal solution

with the best solution we know = the incumbent.
• The LP problem has an optimal solution that is worse than the incumbent, done.

(In all the cases above, we know all we need to know about that subproblem. We
say that subproblem is fathomed.)
• The LP problem has an optimal solution that are not all integer, better than the

incumbent. In this case we would have to divide this subproblem further and repeat.

A subproblem is fathomed whenever:

1. The relaxation of the subproblem has an optimal solution with z < z∗ where z∗ is the
current best solution;

2. The relaxation of the subproblem has no feasible solution;
3. The relaxation of the subproblem has an optimal solution that has all integer values

16.3 Illustration example

We start with the following problem which becomes the root of the tree:

16.3. Illustration example 151

(ILP) root

(ILP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

xi ≥ 0 (p.c.), xi ∈ Z

16.3.1 Root (ILP)

We start by solving the LP relaxation of the
root problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

xi ≥ 0 (p.c.)

The Optimal solution of the relaxation is
(x1, x2) = (3.8, 3) with z = 8.2.

Then we consider two cases : x1 ≥ 4 and x1 ≤ 3. This gives us a the first split of the tree:

(ILP) root

(ILP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

xi ≥ 0 (p.c.), xi ∈ Z

(ILP) 1 - x1 ≥ 4

(ILP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≥ 4

xi ≥ 0 (p.c.), xi ∈ Z

(ILP) 2 - x1 ≤ 3

(ILP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

xi ≥ 0 (p.c.), xi ∈ Z

152 Chapter 16. The Branch and Bound algorithm

16.3.2 (ILP) 1 - Root→ Left

The LP relaxation of the problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≥ 4

xi ≥ 0 (p.c.)

has as Optimal solution : (x1, x2) = (4, 2.9)

with z = 7.6.

This gives us two new cases : x2 ≥ 3 and x2 ≤ 2 and makes us the split the tree further:

(ILP) 1

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≥ 4

xi ≥ 0 (p.c.), xi ∈ Z

(ILP) 3 - x2 ≥ 3

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

4 ≤ x1 ≤ 5

x2 ≥ 3

xi ≥ 0 (p.c.), xi ∈ Z

(ILP) 4 - x2 ≤ 2

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

4 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

xi ≥ 0 (p.c.), xi ∈ Z

(Only partial tree, see figure 16.1 on page on page 156 for full tree)

16.3.3 (ILP) 3 - Root→ Left→ Left

The LP relaxation of the problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

4 ≤ x1 ≤ 5

x2 ≥ 3

xi ≥ 0 (p.c.)

has no feasible solution at all due to the con-
straints voiding the set of feasible solution.

Hence the (ILP) has no solution either.

16.3. Illustration example 153

16.3.4 (ILP) 4 - Root→ Left→ Right

The LP relaxation of the problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

4 ≤ x1 ≤ 5

0 ≤ x2 ≤ 2

xi ≥ 0 (p.c.)

has as Optimal solution : (x1, x2) = (4, 2)

with z = 4.
This is the optimal solution of the (ILP) as well.
Currently the best value of z for the original (ILP) is 4 with (x1, x2) = (4, 2).

16.3.5 (ILP) 2 - Root→ Right

The LP relaxation of the problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣∣
(S)


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

xi ≥ 0 (p.c.)

has as Optimal solution : (x1, x2) = (3, 2.6)

with z = 7.4.
This gives us two new cases : x2 ≤ 2 and x2 ≥ 3 and makes us the split the tree further:

(ILP) 2

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

xi ≥ 0 (p.c.), xi ∈ Z

(ILP) 5 - x2 ≤ 2

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x2 ≤ 2

xi ≥ 0 (p.c.), xi ∈ Z

(ILP) 6 - x2 ≥ 3

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x2 ≥ 3

xi ≥ 0 (p.c.), xi ∈ Z

(Only partial tree, see figure 16.1 on page on page 156 for full tree)

154 Chapter 16. The Branch and Bound algorithm

16.3.6 (ILP) 6 - Root→ Right→ Right

The LP relaxation of the problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(S)



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x2 ≥ 3

xi ≥ 0 (p.c.)

has no feasible solution, hence the (ILP)

has no solution either we stop there.

16.3.7 (ILP) 5 - Root→ Right→ Right

The LP relaxation of the problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(S)



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x2 ≤ 2

xi ≥ 0 (p.c.)

has as Optimal solution : (x1, x2) = (1.8, 2)

with z = 6.2.

This gives us two new cases : x1 ≤ 1 and x1 ≥ 2 and makes us the split the tree further:

(ILP) 5

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x2 ≤ 2

xi ≥ 0 (p.c.), xi ∈ Z

(ILP) 7 - x1 ≤ 1

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x1 ≤ 1

x2 ≤ 2

xi ≥ 0 (p.c.), xi ∈ Z

(ILP) 8 - x1 ≥ 2

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

2 ≤ x1 ≤ 3

x2 ≤ 2

xi ≥ 0 (p.c.), xi ∈ Z

(Only partial tree, see figure 16.1 on page on page 156 for full tree)

16.3. Illustration example 155

16.3.8 (ILP) 7 - Root→ Right→ Left→ Left

The LP relaxation of the problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(S)



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x1 ≤ 1

x2 ≤ 2

xi ≥ 0 (p.c.)

The (LP) has as Optimal solution : (x1, x2) = (2, 2) with z = 6.

Since this is better than the incumbent z = 4 at (x1, x2) = (4, 2), this new integer solution
is our current best solution.

16.3.9 (ILP) 8 - Root→ Right→ Left→ Right

The LP relaxation of the problem:

(LP)



max z(x) = −x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(S)



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

2 ≤ x1 ≤ 3

x2 ≤ 2

xi ≥ 0 (p.c.)

has as Optimal solution : (x1, x2) = (1, 1.6)

with z = 5.4.
Then any integer solution in this region can not give us a solution with the value of z greater

than 5.4. This branch is fathomed.

156 Chapter 16. The Branch and Bound algorithm

(ILP) root

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

xi ≥ 0 (p.c.), xi ∈ Z

(LP) sol (3.8, 3) - z = 8.2

(ILP) 1 - x1 ≥ 4

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≥ 4

xi ≥ 0 (p.c.), xi ∈ Z

(LP) sol (4, 2.9) with z = 7.6

(ILP) 3 - x2 ≥ 3

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

4 ≤ x1 ≤ 5

x2 ≥ 3

xi ≥ 0 (p.c.), xi ∈ Z

((LP) impossible)

(ILP) 4 - x2 ≤ 3

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

4 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

xi ≥ 0 (p.c.), xi ∈ Z

(LP) sol (4, 2) with z = 4

(ILP) 2 - x1 ≤ 3

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣


−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

xi ≥ 0 (p.c.), xi ∈ Z

(LP) sol (3, 2.6) with z = 7.4

(ILP) 5 - x2 ≤ 2

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x2 ≤ 2

xi ≥ 0 (p.c.), xi ∈ Z

(LP) sol (1.8, 2) with z = 6.2

(ILP) 7 - x1 ≤ 1

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x1 ≤ 1

x2 ≤ 2

xi ≥ 0 (p.c.), xi ∈ Z

(LP) sol (2, 2) with z = 6

(ILP) 8 - x1 ≥ 2

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

2 ≤ x1 ≤ 3

x2 ≤ 2

xi ≥ 0 (p.c.), xi ∈ Z

(LP) sol (1, 1.6) with z = 5.4

(ILP) 6 - x2 ≥ 3

max z(x) = −x1 + 4x2

wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≤ 3

x2 ≥ 3

xi ≥ 0 (p.c.), xi ∈ Z

(LP) impossible

Figure 16.1: Full tree of illustration example

16.4. The Branch-and-Bound method 157

16.4 The Branch-and-Bound method

16.4.1 General Form

The following phases are repeated at least until a integer solution is produced:

• branch : selection and branch
• bound : limitation and elimination

Selection

A sub-problem not yet eliminated and not yet branched is chosen to start the process (all)
over. In general, one always continue the algorithm from the best node not yet selected.

Branching

This consists in splitting the region of feasible solution (reprsented as a node in the tree) in
two distinct sets. Each of these new set resolves to a new problem, i.e a new nod in the tree).
Whenever more that one variable are not integer, one can choose either the on the with the
highest impact on the score (the most valuable) or the first one in terms of index number.

Limitation

Bounds on the optimal solution are extracted from the sub-problems.

Elimination

Exclusion of the sub-problem(s) where wither the (LP) is impossible to solve ot the solution
to the LP is not better than the current (ILP) best solution found so far.

16.4.2 Assumptions

There are a few assumptions on which the B&B algorithm is built

• The B&B algorithm relies on an underlying algorithm offering a way to solve the (LP)

resulting from the LP relaxation of the (ILP) problem.
• Also, it needs a branching rule that can be used to split the set of feasible solutions into

distinct sub-sets from a current solution.

16.5 Algorithm of Branch-and-Bound

Notations :

• NF set of the feasible solutions, set of the possible tree nodes
• zl lower bound on the solution of the problem, i.e. value of the best solution found so far
• f : F → R the score (objective) function. F is the region of the feasible solutions
• F r region of the feasible solution for an LP relaxation of the original problem
• (z, x) an optimal solution of a sub-problem

158 Chapter 16. The Branch and Bound algorithm

Input : parameters of the optimization problem (ILP)

Ouput : either an optimal solution or no solution

Initializations :

• (O1) F0 = F r

• (O2) NF = 0 (root of the tree)
• (O3) Zl = − inf

Iteration :

Step 1 - selection :

• (E1) Choose k ∈ NF
• (E2) Let Sk = max{f(x)|x ∈ F k} with F k ⊂ F

(Sk is the solution to the relaxed problem)

Step 2 - limitation :

• (E3) Compute an optimal solution (zk, xk) for Sk
• (E4) Whenever Sk doesn’t have a solution, let zk = − inf

Step 3 - elimination :

• (E5) Sk is excluded whenever

• zk = − inf (no solution)
• zk < zl (no possible amelioration)
• zk = zl and xk /∈ F (no possible amelioration)

• (E6) If zk > zl then zl = zk, NF = NF {k}, goto Step 5

Step 4 - branch :

• (E7) Partition sol Fk = Fk1 ∪ Fk2 ∪ ... ∪ Fkn
• (E6) Pose NF = (NF {k}) ∪ {k1, k2, ..., kn}
• (E8) goto Stop

Stop :

• (A1) If NF 6= , then goto Step 1
• (A2) zl is the optimum solution
• (A3) If zl = − inf, then the problem has no solution

16.6. Practice 159

16.6 Practice

16.6.1 Exercise 1 : Branch & Bound - Simplex

Solve the following (ILP) problem using B&B and the Simplex:

(ILP)


max z(x) = x1 + 4x2

w.r.

∣∣∣∣∣∣∣∣
(S)

{
5x1 + 8x2 ≤ 40

−2x1 + 3x2 ≤ 9

xi ≥ 0 (p.c.), xi ∈ Z

16.6.1.1 Solution

For the sake of simplifying the iterations, we’ll use the R environment to solve the Simplex on
the LP relaxed problems (see 14.3).

Root node :

Solving the LP relaxation with R

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3), nrow = 2, ncol=2, byrow=TRUE)
b1<-c(40, 9)
simplex(a, A1, b1, maxi = TRUE)
...

x1 x2
1.548387 4.032258
The optimal value of the objective function is 17.6774193548387.

(ILP) root

(x1, x2) = (1.55, 4.03)
z = 17.68

(ILP) 1 - x1 ≤ 1

?

(ILP) 2 - x1 ≥ 2

?

(ILP) 1 - x1 ≤ 1 :

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3, 1, 0), nrow = 3, ncol=2, byrow=TRUE)
b1<-c(40, 9, 1)
simplex(a, A1, b1, maxi = TRUE)
...

x1 x2
1.000000 3.666667
The optimal value of the objective function is 15.6666666666667.

(ILP) 2 - x1 ≥ 2 :

160 Chapter 16. The Branch and Bound algorithm

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3), nrow = 2, ncol=2, byrow=TRUE)
b1<-c(40, 9)
A2<-matrix(c(1, 0), nrow = 1, ncol=2, byrow=TRUE)
b2<-c(2)
simplex(a, A1, b1, A2, b2, maxi = TRUE)
...
x1 x2

2.00 3.75
The optimal value of the objective function is 17.

Next split

(ILP) root

(x1, x2) = (1.55, 4.03)
z = 17.68

(ILP) 1 - x1 ≤ 1

(x1, x2) = (1, 3.67)
z = 15.67

(ILP) 3 - x2 ≤ 3

?

(ILP) 4 - x2 ≥ 4

?

(ILP) 2 - x1 ≥ 2

(x1, x2) = (2, 3.75)
z = 17

(ILP) 5 - x2 ≤ 3

?

(ILP) 6 - x2 ≥ 4

?

(ILP) 3 - x2 ≤ 3 :

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3, 1, 0, 0, 1), nrow = 4, ncol=2, byrow=TRUE)
b1<-c(40, 9, 1, 3)
simplex(a, A1, b1, maxi = TRUE)
...
x1 x2
1 3
The optimal value of the objective function is 13.

(ILP) 4 - x2 ≥ 4 :

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3, 1, 0), nrow = 3, ncol=2, byrow=TRUE)
b1<-c(40, 9, 1)
A2<-matrix(c(0, 1), nrow = 1, ncol=2, byrow=TRUE)
b2<-c(4)
simplex(a, A1, b1, A2, b2, maxi = TRUE)
...
No feasible solution could be found.

(ILP) 5 - x2 ≤ 3 :

16.6. Practice 161

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3, 0, 1), nrow = 3, ncol=2, byrow=TRUE)
b1<-c(40, 9, 3)
A2<-matrix(c(1, 0), nrow = 1, ncol=2, byrow=TRUE)
b2<-c(2)
simplex(a, A1, b1, A2, b2, maxi = TRUE)
...
x1 x2

3.2 3.0
The optimal value of the objective function is 15.2.

(ILP) 6 - x2 ≥ 4 :

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3), nrow = 2, ncol=2, byrow=TRUE)
b1<-c(40, 9)
A2<-matrix(c(1, 0, 0, 1), nrow = 2, ncol=2, byrow=TRUE)
b2<-c(2, 4)
simplex(a, A1, b1, A2, b2, maxi = TRUE)
...
No feasible solution could be found.

Next split

(ILP) root

(x1, x2) = (1.55, 4.03)
z = 17.68

(ILP) 1 - x1 ≤ 1

(x1, x2) = (1, 3.67)
z = 15.67

(ILP) 3 - x2 ≤ 3

(x1, x2) = (1, 3)
z = 13

(Integer sol⇒ stop)

(ILP) 4 - x2 ≥ 4

no solution

(ILP) 2 - x1 ≥ 2

(x1, x2) = (2, 3.75)
z = 17

(ILP) 5 - x2 ≤ 3

(x1, x2) = (3.2, 3)
z = 15.2

(ILP) 7 - x1 ≤ 3

?

(ILP) 8 - x1 ≥ 4

?

(ILP) 6 - x2 ≥ 4

no solution

(ILP) 7 - x1 ≤ 3 :

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3, 0, 1, 1, 0), nrow = 4, ncol=2, byrow=TRUE)
b1<-c(40, 9, 3, 3)
A2<-matrix(c(1, 0), nrow = 1, ncol=2, byrow=TRUE)
b2<-c(2)
simplex(a, A1, b1, A2, b2, maxi = TRUE)
...

162 Chapter 16. The Branch and Bound algorithm

x1 x2
3 3
The optimal value of the objective function is 15.

(ILP) 8 - x1 ≥ 4 :

a<-c(1, 4)
A1<-matrix(c(5, 8, -2, 3, 0, 1), nrow = 3, ncol=2, byrow=TRUE)
b1<-c(40, 9, 3)
A2<-matrix(c(1, 0, 1, 0), nrow = 2, ncol=2, byrow=TRUE)
b2<-c(2, 4)
simplex(a, A1, b1, A2, b2, maxi = TRUE)
...
x1 x2
4.0 2.5
The optimal value of the objective function is 14.

No need to go any further here since a child of (ILP) 8 cannot be better than (ILP) 7

Final tree

(ILP) root

(x1, x2) = (1.55, 4.03)
z = 17.68

(ILP) 1 - x1 ≤ 1

(x1, x2) = (1, 3.67)
z = 15.67

(ILP) 3 - x2 ≤ 3

(x1, x2) = (1, 3)
z = 13

(Integer sol⇒ stop)

(ILP) 4 - x2 ≥ 4

no solution

(ILP) 2 - x1 ≥ 2

(x1, x2) = (2, 3.75)
z = 17

(ILP) 5 - x2 ≤ 3

(x1, x2) = (3.2, 3)
z = 15.2

(ILP) 7 - x1 ≤ 3

(x1, x2) = (3, 3)
z = 15

(Integer sol⇒ stop)

(ILP) 8 - x1 ≥ 4

(x1, x2) = (4, 2.5)
z = 14

(Not better⇒ Stop)

(ILP) 6 - x2 ≥ 4

no solution

16.6.1.2 Result

The solution of the (ILP) is (x1, x2) = (3, 3) with result z = 15

16.6.2 Exercise 2 : The Knapsack problem

The problam is as follows:

16.6. Practice 163

Various items are put in a bag. Given a set of items, each with a weight and a value,
determine the number of each item to include in a collection so that the total weight is less
than or equal to a given limit and the total value is as large as possible.

16.6.2.1 The problem

• the volume of the bag is 15 (lt).
• there are five objects

Object Value Volume Rank
1 5 5 1
2 3 4 5
3 6 7 4
4 6 6 1
5 2 2 1

The problem can be formalized as follows:

(ILP)


max z(x) = 5x1 + 3x2 + 6x3 + 6x4 + 2x5

w.r.

∣∣∣∣∣∣ (S)
{

5x1 + 4x2 + 7x3 + 6x4 + 2x5 ≤ 15

xi ∈ {0, 1}

16.6.2.2 Solution

(ILP) root

x = (1, 0, 2/7, 1, 1)
z = 14.72

(ILP) 1 - x3 = 0

x = (1, 1/2, 0, 1, 1)
z = 14.5

(ILP) 3 - x2 = 0

x = (1, 0, 0, 1, 1)
z = 13

(ILP) 4 - x2 = 1

x = (1, 1, 0, 1, 0)
z = 14

(ILP) 2 - x3 = 1

x = (2/5, 0, 1, 1, 0)
z = 14

(ILP) 5 - x1 = 0

x = (0, 0, 1, 1, 1)
z = 14

(ILP) 6 - x1 = 1

x = (1, 0, 1, 1/2, 0)
z = 14

(ILP) 7 - x4 = 0

x = (1, 1/4, 1, 0, 1)
z = 14

(cannot continue)

(ILP) 8 - x4 = 1

x = (1, 0, 1, 1, 0)

(no solution)

16.6.3 Exercise 3 : an (ILP) as a binary problem (Knaspack

TODO

CHAPTER 17

The Cutting Plane method

Contents
17.1 Introduction . 165

17.1.1 Example on the Knapsack problem . 166

17.2 Gomory’s cut . 166

17.2.1 The principle . 166

17.2.2 At start, the Simplex . 167

17.2.3 Chosing a source constraint . 167

17.2.4 Extracting the constraint . 168

17.2.5 Introduce a new slack variable . 168

17.2.6 A new problem . 168

17.3 Example continued . 169

17.3.1 Solving the dual with the Simplex . 170

17.3.2 Back under primal form . 171

17.4 Notes . 171

17.1 Introduction

In mathematical optimization, the cutting-plane method (french: "Méthode de coupes" is an
umbrella term for optimization methods which iteratively refine a feasible set or objective function
by means of linear inequalities, termed cuts.

Cutting plane methods for (ILP) work by solving a non-integer linear program, the linear
relaxation of the given integer program. The obtained optimum is tested for being an integer
solution.

• If it is, the algorithm is over
• If it is not, there is guaranteed to exist a linear inequality that separates the optimum from

the convex hull (frenchh : enveloppe convexe) of the true feasible set.

Finding such an inequality is the separation problem, and such an inequality is a cut. A cut
can be added to the relaxed linear program. Then, the current non-integer solution is no longer
feasible to the relaxation.
This process is repeated until an optimal integer solution is found.

166 Chapter 17. The Cutting Plane method

17.1.1 Example on the Knapsack problem

Let’s illustrate this technic on the following
Knapscak problem:

(ILP)


max z(x) = 10x1 + 11x2

w.r.

∣∣∣∣∣∣∣∣
(S)

{
10x1 + 12x2 ≤ 59

x1 ≤ 5

xi ≥ 0 (p.c.), xi ∈ Z

The optimum solution of the LP relaxation of the problem is the right-most point x = (5.9, 0).
x1 ≤ 5 is a cut since it eliminates this optimum solution without any impact on integer
solutions. Also, any inequations of the form x1 + x2 ≤ α respecting 5 ≤ α ≤ 5.9 is a cut.

Thanks to successvie cuts, one can build the convexe hull around the integer solutions, at
least in the neihgbourhood of the optimal solution. When all the constraints required to build
this convexe hull have been added to the LP relaxation of the problem, the nest solution of this
problem will return the integer solution.

In the previous example, one only need the
cuts x1 + x2 ≤ 5 and x2 ≤ 4 to build this
concexe hull. When these cuts are added
to the LP relaxation of the problem, the next
resolution of this problem gives the optimal
integer solution x = (4, 4)

As one can guess, chosing the right cuts amongst the set of possible cuts is crucial to reach
the optimal integer solution. In the previous example, for instance, had one chosen a cut of the
form αk = αk − 1 − 1

10k
, one would have gotten close to the convexe hull without ever reaching

it. In conclusion, one needs to choose efficient cuts.

17.2 Gomory’s cut

17.2.1 The principle

Cutting planes were proposed by R. Gomory in the 1950s as a method for solving integer pro-
gramming and mixed-integer programming problems. However most experts, including Gomory
himself, considered them to be impractical due to numerical instability, as well as ineffective be-
cause many rounds of cuts were needed to make progress towards the solution.
Gomory cuts, however, are very efficiently generated from a simplex tabular, whereas many
other types of cuts are either expensive or even NP-hard to separate

17.2. Gomory’s cut 167

Let’s assume we face an (ILP) problem ex-
pressed under standard form this way:

(ILP)


max |min z(x) = at · x

w.r.

∣∣∣∣∣∣ (S)
{
A · x = bt

xi ≥ 0 (p.c.) and xi ∈ Z

Let’s use for instance:

(ILP)


max z(x) = x1 + x2

w.r.

∣∣∣∣∣∣∣∣
(S)

{
7x1 + x2 ≤ 15

−x1 + x2 ≤ 1

xi ≥ 0 (p.c.) and xi ∈ Z

The method proceeds by first dropping the requirement that the xi be integers and solving
the corresponding LP relaxation problem to obtain a basic feasible solution.
Geometrically, this solution will be a vertex of the convex polytope consisting of all feasible points.

If this vertex is not an integer point then the method finds a hyperplane with the vertex on
one side and all feasible integer points on the other.

17.2.2 At start, the Simplex

Using the simplex algorithm, the solution is extracted from a last system expressing the base
variables as well as the score in terms of the off-base variables.

In the constraint equations system we end
up with a set of equations of the form:

xi +
m∑
j=1

āijλj = b̄i with


xi a base variable
λj an off-base variable
āij the coefficient of λj

In our example:
max z(x) = 9

2 −
1
4x3 −

3
4x4

w.r.

∣∣∣∣∣∣∣∣
(S)

{
x1 + 1

8x3 −
1
8x4 = 7

4

x2 + 1
8x3 + 7

8x4 = 11
4

xi ≥ 0 (p.c.)

(with sol : x = (
7

4
,
11

4
, 0, 0))

One should note that there are mandatorily fractionnal coefficients. If every coefficient were
integers, we would have an entire solution of the LP relaxation and we would be done.

17.2.3 Chosing a source constraint

Amongst this set of equations,one should chose one write a new equation with integer parts on
the left and fractionnal part on the right.. That new extraction simply consists in a few manipula-
tion to peform on the former one.

The new equation has the form

xi +
m∑
j=1

bāijcλj − bb̄ic = b̄i − bb̄ic −
m∑
j=1

(āij − bāijc)λj

In our example:

x1 + 0x3−1x4 − 1 =
7

4
− 1− (

1

8
− 0)x3 − (−1

8
− (−1))x4

This equation holds only for the LP relaxation, i.e. whenever xi ∈ R. But what happens for an
entire solution ?

168 Chapter 17. The Cutting Plane method

For any integer point in the feasible region, i.e. an entire solution ⇒ xi ∈ Z, the left side of
this equation is mandatorily an integer. But we know that the right side is mandatorily less than
1 (<1).
Hence the common part must be less than or equal to 0.

17.2.4 Extracting the constraint

In the light of this, one knows that the following inequality must hold for any integer point in the
feasible region.

We know this is true:

b̄i − bb̄ic+
m∑
j=1

(āij − bāijc)λj ≤ 0⇔

m∑
j=1

(āij − bāijc)λj ≤ −b̄i + bb̄ic

In our example:

7

4
− 1− (

1

8
− 0)x3 − (−1

8
− (−1))x4 ≤ 0⇔

3

4
− 1

8
x3 −

7

8
x4 ≤ 0⇔

−1

8
x3 −

7

8
x4 ≤ −

3

4

And we end up with our new cut!

17.2.5 Introduce a new slack variable

So the inequality above excludes the basic feasible solution and thus is a cut with the desired
properties. Introducing a new slack variable xk for this inequality, a new constraint is added to
the linear program.

Introducing xk the new slack variable

xk +

m∑
j=1

(āij − bāijc)λj = −b̄i + bb̄ic

In our example:

−1

8
x3 −

7

8
x4 ≤ −

3

4
⇔

−1

8
x3 −

7

8
x4 + x5 = −3

4

17.2.6 A new problem

The new constraint is added to the former LP relaxation of the (ILP) problem and the whole
process starts all over until an entire solution is found (either luckily or because the full convexe
hull around entire soltion has been built)

17.3. Example continued 169

In our example, we end up with the following new problem:



max z(x) = 9
2 −

1
4x3 −

3
4x4

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


x1 + 1

8x3 −
1
8x4 = 7

4

x2 + 1
8x3 + 7

8x4 = 11
4

−1
8x3 −

7
8x4 + x5 = −3

4

xi ≥ 0 (p.c.)

(with sol : x = (
7

4
,
11

4
, 0, 0))

17.3 Example continued

Let’s continue the example of the previous section as it provides forms an interesting case. When
looking carefully at the new constraint, one sees that the usual initial solution (with each variable
appearing only once in an equation considered a base variable) is a non-feasible solution.
When putting the x3, x4 variable at 0 in the system of equations, we get:

(S)


x1 + 1

8x3 −
1
8x4 = 7

4

x2 + 1
8x3 + 7

8x4 = 11
4

−1
8x3 −

7
8x4 + x5 = −3

4

⇒


x1 + 1

80− 1
80 = 7

4

x2 + 1
80 + 7

80 = 11
4

−1
80− 7

80 + x5 = −3
4

⇒


x1 = 7

4

x2 = 11
4

x5 = −3
4

At that point, either one tries to come up with another partitioning in base variable / off-base
variable or one can try to solve the Dual problem (see 18). Let’s transform the problem into its
dual form.
First we need to get back in a primal form where we have strictly the same variables in every
constraint and in the score. Whenever we should not be possible, one has to add all variables
in every constraint and in the score with the coefficient 0 to perform the traduction → painful.
In our case, we can simply considere the variables appearing only once ion the constraints as
slack variables and get rid of them

Primal form:

max z(x) = 9
2−

1
4x3−

3
4x4

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


1
8x3 −

1
8x4 ≤

7
4

1
8x3 + 7

8x4 ≤
11
4

−1
8x3 −

7
8x4 ≤ −

3
4

xi ≥ 0 (p.c.)

Dual form:
minw(x) = 9

2 + 7
4y1 + 11

4 y2−
3
4y3

w.r.

∣∣∣∣∣∣∣∣
(S)

{
1
8y1 + 1

8y2 −
1
8y3 ≥ −

1
4

−1
8y1 + 7

8y2 −
7
8y3 ≥ −

3
4

xi ≥ 0 (p.c.)

170 Chapter 17. The Cutting Plane method

We now rewrite the dual problem:
minw(x) = 9

2 + 7
4y1 + 11

4 y2−
3
4y3

w.r.

∣∣∣∣∣∣∣∣
(S)

{
−1

8y1 −
1
8y2 + 1

8y3 ≤
1
4

+1
8y1 −

7
8y2 + 7

8y3 ≤
3
4

xi ≥ 0 (p.c.)

The big advantage here is that we end up
with positive values on the right side of the
constraint system equations.

Under standard form:
minw(x) = 9

2 + 7
4y1 + 11

4 y2−
3
4y3

w.r.

∣∣∣∣∣∣∣∣
(S)

{
−1

8y1 −
1
8y2 + 1

8y3 + y4 = 1
4

+1
8y1 −

7
8y2 + 7

8y3 + y5 = 3
4

xi ≥ 0 (p.c.)

which has a feasible initial solution in the
simplex.

This gives us the following variable mapping (primal in-base = dual off-base (slack)):

primal x1 x2 x3 x4 x5
dual y1 y2 y4 y5 y3

17.3.1 Solving the dual with the Simplex

Step 1 : We start with the following tabular :

Step 2 : And end up here after one iteration :

Let’s represent this situation under the usual form

17.4. Notes 171

We now rewrite the dual problem:
minw(x) = 13

7 y1 + 2y2 + 0y3 + 0y4 + 6
7y5

w.r.

∣∣∣∣∣∣∣∣
(S)

{
−1

7y1 − 0y2 + 0y3 + 1y4 − 1
7y5 = 1

7

+1
7y1 − 1y2 + 1y3 + 0y4 + 8

7y5 = 6
7

xi ≥ 0 (p.c.)

Under canonical form:
minw(x) = 13

7 y1 + 2y2 + 6
7y5

w.r.

∣∣∣∣∣∣∣∣
(S)

{
−1

7y1 − 0y2 − 1
7y5 ≤

1
7

+1
7y1 − 1y2 + 8

7y5 ≤
6
7

xi ≥ 0 (p.c.)

Here, as it shows, y3 and y4 are the slack variables (see their values in score and weight
matrix), hence the variables used back in the primal form will be x3 and x5. Let’s get rid of the
slack variable and use the canonical form:

17.3.2 Back under primal form

We can now convert it back to the primal
poblem

maxw(x) = 1
7x3 + 6

7x5

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


−1

7x3 + 1
7x5 ≥

13
7

0x3 − x5 ≥ 2

−1
7x3 + 8

7x5 ≥
6
7

xi ≥ 0 (p.c.)

Hence we end up with:

maxw(x) = 1
7x3 + 6

7x5 + 27
7

w.r.

∣∣∣∣∣∣∣∣∣∣
(S)


−1

7x3 + 1
7x5 ≥

13
7

0x3 − x5 ≥ 2

−1
7x3 + 8

7x5 ≥
6
7

xi ≥ 0 (p.c.)

One should take care here that we dropped the constant 9
2 when solving the dual problem,

one has now to re-inject it in the equation with the result of the dual problem solving added to it:
9
2 −

9
14 = 27

7

And so on until the resolution of the LP relaxation produces an integer solution ...

17.4 Notes

• These methods are very heavy in terms of both computation time and memory space
• A great precision is required in order to differentiate integer values from fractionnal values
• Each iteration produces a new bound in the form of a new constraint

CHAPTER 18

The Dual problem

Contents
18.1 Motivation . 173
18.2 Properties . 173
18.3 Transformation . 174

18.3.1 Formal form . 174

18.3.2 Matrix form . 174

18.3.3 Example . 175

18.4 Notes . 176
18.4.1 Which is better ? . 176

18.4.2 Primal-Dual correspondance . 176

18.5 Example . 176

18.1 Motivation

Associated with each (primal) LP problem is a companion problem called the dual problem (this
has been demonstrated in a theorem).
For some problems, it might be easier to solve the dual problem instead of the primal one, and
merge back the solutions in the primal problem.

For instance, when a linear optimisation problem is not in standard form, we have seen tech-
niques in section 14.2 to add variables - or other manipulations - to make it in standard form in
order to be able to run the complex algorithm on it.
Sometimes, it is more efficient to convert it to its dual problem instead of running those manipu-
lations.

For instance if one of the b quantity of a contraint is negative, we have seen how to multiply
both members of the constraint by −1 as a first step to make it in standard form (see section
14.2). Instead of performing this manipulation, one might want to look at the dual problem and
see if it is easily resolvable.

18.2 Properties

There are two ideas fundamental to duality theory:

174 Chapter 18. The Dual problem

• The dual of a dual linear program is the original primal linear program.
• The strong duality theorem states that if the primal has an optimal solution, x∗, then the

dual also has an optimal solution, y∗, such that ctx∗ = bty∗.

18.3 Transformation

We will see here the principle of the transformation between both problems expressed in various
forms.

18.3.1 Formal form

Formally, the transformation occurs this way:

• To each variable in the primal space corresponds an inequality to satisfy in the dual space,
both indexed by output type.
• To each inequality to satisfy in the primal space corresponds a variable in the dual space,

both indexed by input type.
• The coefficients that bound the inequalities in the primal space are used to compute the

objective in the dual space.
• The coefficients used to compute the objective in the primal space bound the inequalities

in the dual space.
• the inequalities are inversed.

Primal problem Dual problem


min z =

n∑
j=1

cjxj or z = cx

WR

∣∣∣∣∣
{∑n

j=1 aijxj ≤ bi or Ax ≤ b

xj ≥ 0 w. (i = 1, ...,m, j = 1, ..., n)

↔


max w =

m∑
i=1

bjyi or w = bty

WR

∣∣∣∣∣
{∑m

i=1 aijyi ≥ cj or Aty ≥ c

yi ≥ 0 w. (i = 1, ...,m, j = 1, ..., n)

18.3.2 Matrix form

In the matrix, representation, one ca sees that the transformation is pretty straightforward.

• Both the primal and the dual problems make use of the same matrix, transposed in the
dual space.

One should not that, as stated before, the inequalities are reversed, Since each inequality can
be replaced by an equality and a slack variable, this means each primal variable corresponds to
a dual slack variable, and each dual variable corresponds to a primal slack variable.

Base problems

18.3. Transformation 175

Primal problem Dual problem

map x1 x2 x3 x4 b

m1 a11 a12 a13 a14 b1
m2 a21 a22 a23 a24 b2
m3 a31 a32 a33 a34 b3
∆ c1 c2 c3 c4 0

map y1 y2 y3 c

m1 a11 a21 a31 c1
m2 a12 a22 a32 c2
m3 a13 a23 a33 c3
m4 a14 a24 a34 c3
∆ b1 b2 b3 0

Introducting slack variables

The introduction of the slack variables enable to map all variables between both problems

Primal problem Dual problem

map x1 x2 x3 x4 λ5 λ6 λ7 b

m1 a11 a12 a13 a14 1 0 0 b1
m2 a21 a22 a23 a24 0 1 0 b2
m3 a31 a32 a33 a34 0 0 1 b3
∆ c1 c2 c3 c4 0 0 0 0

map y1 y2 y3 α4 α5 α6 α7 c

m1 a11 a21 a31 1 0 0 0 c1
m2 a12 a22 a32 0 1 0 0 c2
m3 a13 a23 a33 0 0 1 0 c3
m4 a14 a24 a34 0 0 0 1 c3
∆ b1 b2 b3 0 0 0 0 0

which enables us to build the following correspondans matrix, knowing the base variables of the
primal problem maps to the off-base variables of the dual problem and the other way around:

primal x1 x2 x3 x4 λ5 λ6 λ7
dual α4 α5 α6 α7 y1 y2 y3

The coefficients we will find for these variables in one of each of the problem are the same
that applies to the variables of the other problem following this mapping.

18.3.3 Example

Primal problem Dual problem



min z = 4x1 + x2 + 5x3 + 3x4

WR

∣∣∣∣∣

x1−x2−x3 + 3x4 ≤ 1

5x1+x2+3x3+8x4 ≤ 55

−x1+x2+3x3−5x4 ≤ 3

x1, x2, x3, x4 ≥ 0

↔



max w = y1+55y2+3y3

WR

∣∣∣∣∣


y1+5y2−y3 ≥ 4

−y1+y2+2y3 ≥ 1

−y1+3y2+3y3 ≥ 5

3y1+8y2−5y3 ≥ 3

y1, y2, y3 ≥ 0

176 Chapter 18. The Dual problem

18.4 Notes

18.4.1 Which is better ?

Whenever the number of constraintsm is greater than> the number of free variables n⇒ whe’re
better off solving the dual problem as this will be quicker (less iterations)

18.4.2 Primal-Dual correspondance

Whenever the primal problem as an optimal solution x = (x1
∗, ..., xn

∗), then the dual problem as
a solution y = (x1

∗, ..., ym
∗) such that:

z =

n∑
j=1

cjxj
∗ =

m∑
i=1

biyi
∗ = w

18.5 Example

TODO : Build a complete solution taking one example of Cedric Bilat’s lecture.

18.5. Example 177

	I Differential Optimisation
	Introduction
	Purpose
	Introductory example
	Notation
	Formalizing the problem

	Modeling
	Introductory example : Indiana Jones

	Transformation
	The score function
	Definition
	Note
	Local differential optimisation
	Hypothesis

	Practice
	Exercise 1: Transformation

	Mathematical introduction
	Recall of mathematical analysis
	1D derivative
	2D derivative
	Secondary partial derivative
	Partial differential equations

	The Gradient vector
	Directional derivatives
	Properties of the gradient vector
	Demonstration: the formula of the normal vector

	The Hessian matrix
	The curvature

	Practice
	Exercise 2: recall on derivatives
	Exercise 3: The normal vector
	Exercise 4 : Gradient
	Exercise 5 : Steepest descend, curvature
	Exercise 6 : Hessian
	Exercise 7 : Normal and gradient vectors
	Exercise 10 : Plan curvature

	Introduction to matrix calculations
	Introduction
	General form
	Transpose

	2 x 2 matrices
	Properties
	Inverting a 2 x 2 matrix
	Diagonal matrix

	Quick geometry reminder
	Spectral matrix analysis
	Find eigenvalues
	Find eigenvectors
	Diagonalization
	Example

	Geometrical interpretation of the eigenvalues
	The Rayleigh-Ritz theorem

	Condition number
	Geometrical interpretation of the condition number

	Practice
	Exercise 8 : eigenvalues
	Exercise 9 : Eigenvalues of a diagonal matrix

	Preconditionning
	Preconditionning
	Definition: preconditionning
	Principle
	The Cholesky theorem

	Example in 2D
	Compute Hessian
	Cholesky Decomposition
	Variable Change
	Compute function
	Condition Number
	Contour lines

	Practice
	Exercise 11: preconditionning and variable change
	Reverting variable change
	Inverting the matrix
	Computing x*
	Exercise 12: preconditionning and variable change

	Stopping criterion / Optimality condition
	Introduction
	1-dimension
	2-dimensions or more

	Optimality condition
	Theorem: necessary condition
	Theorem: sufficient condition

	Differential Optimisation
	Introduction
	Principle
	Descent method
	Local algorithms

	Steepest slope method
	Iteration
	The step
	Recall on parabolas
	Example

	Limitations of the steepest slope method
	Estimating the ideal step
	The parabola algorithm

	Stop condition = optimality condition
	Algorithm for the steepest descent
	Performance Optimizations

	Practice
	Exercise 13 : steepest slope descent
	Exercise 14 : interpolating the step length
	Compute first iteration
	What if we keep going on ?

	Solving nonlinear systems - Newton
	Introduction
	Principle

	Newton in 1D
	Graphical approach - 1D Newton
	Analytical approach - 1D Newton
	Divergence - an example

	Newton in nD
	Purpose
	Geometrical approach - nD Newton
	Analytical approach - nD Newton
	Newton's equation

	The Newton algorithm
	Practice
	Exercise 15-a : from a system to the zero
	Exercise 17 : the Newton algorithm

	Solving nonlinear systems - Quasi-Newton methods
	Introduction
	Principle

	The string method
	Finite difference method
	Idea : the secant principle

	The Broyden method
	The linear estimated model
	The Quasi-Newton equation
	Multi-dimensional secant
	Algorithm principle
	Broyden

	Algorithm
	Practice
	Exercise 15-b : from a system to the zero
	Exercice 16 : Zero Newton unidimensional

	Optimisation with The Newton method
	Introduction
	Principle

	The Newton method
	Relation between jacobian of the gradient and the hessian
	Algorithm for the Newton method

	The Quasi-Newton-Secant-Broyden method
	Algorithm for the Quasi-Newton-Secant-Broyden method

	Practice
	Exercise 19 : Quasi-Newton-Secant-Broyden

	II Linear Programming
	Linear programming
	Introduction
	The problem of a manufacturing company
	Modeling

	Definitions
	Linear Programming
	Feasible solutions
	The score function

	Math reminder
	The Gauss method
	Algebra reminder
	Draw a line on a graph

	Practice
	Exercise 1 : Gauss
	Exercise 2 : Modeling

	Geometric Approach
	Introduction
	Definition - Convexe
	Definition - polyhedron

	Approach
	Naive algorithm
	geometrical approach

	Illustration example
	Stage 1 : draw the polygon
	Stage 2 : draw the countour curves
	Stage 3 : find the highest curve

	Graphical sensitivity analysis
	Practice
	Exercise 3 : geometrical approach

	Algebraic Approach - The Simplex algorithm
	Introduction
	Illustration example
	The technique of parameterization
	The Simplex algorithm

	The Simplex algorithm
	Resumed form

	Notes
	Practice
	Exercise 5 : Algebraic Simplex
	Exercise 6 : Algebraic Simplex

	Tabular Approach - The Simplex algorithm
	Purpose
	Illustration example
	base feasible solution
	Iteration 1
	Pivot Point
	Iteration 2
	Stop and results

	Why does the tabular contrain the opposite of the score ?
	Representaiton of the initial LP
	Integrating the score into the constraint system

	Convergence
	Practice
	Exercise 7 : Simplex Tabular approach
	Exercise 8 : Simplex Tabular approach

	Simplex - Additional concerns
	Lack of a feasible initial solution
	Motivation
	The artificial variables algorithm

	(LP) transformations
	Limitations
	parades
	Canonical form - definition

	Simplex using R
	Practice
	Exercise 4 : transformation

	III Integer linear Programming
	Integer Linear programming
	Introduction
	Example

	Differences with (LP)
	Different results
	Even more different

	The Branch and Bound algorithm
	Introduction
	Principle
	Steps

	Illustration example
	Root (ILP)
	(ILP) 1 - Root Left
	(ILP) 3 - Root Left Left
	(ILP) 4 - Root Left Right
	(ILP) 2 - Root Right
	(ILP) 6 - Root Right Right
	(ILP) 5 - Root Right Right
	(ILP) 7 - Root Right Left Left
	(ILP) 8 - Root Right Left Right

	The Branch-and-Bound method
	General Form
	Assumptions

	Algorithm of Branch-and-Bound
	Practice
	Exercise 1 : Branch & Bound - Simplex
	Exercise 2 : The Knapsack problem
	Exercise 3 : an (ILP) as a binary problem (Knaspack

	The Cutting Plane method
	Introduction
	Example on the Knapsack problem

	Gomory's cut
	The principle
	At start, the Simplex
	Chosing a source constraint
	Extracting the constraint
	Introduce a new slack variable
	A new problem

	Example continued
	Solving the dual with the Simplex
	Back under primal form

	Notes

	The Dual problem
	Motivation
	Properties
	Transformation
	Formal form
	Matrix form
	Example

	Notes
	Which is better ?
	Primal-Dual correspondance

	Example

