RESUME Theoretical Computer Seienee
STRINGS AND LANGUAGES © The string of the length zero is called the empty string and is wrtten as € A languoage is o set of strings.

Chap | 2 Rcsular languages
INTRODUCTION
An Weolized computer s coled o “computotional model” which allows s to set up & manageable mathemoticol *H\e.crb of it chd-l:j. As with ongy model n science, a computational model moy be.

aceurate n some ways but perhaps not in others. The simplest model is called “Gnite state moachine” or “Ginite automaton”
FINITE AUTUMATA

* Finite Automato are 300& models Gor computers with an extremel frvited * 3(X1) =Yy, meons that o tronsition Srom X to 4 exists when the mochine reads o 1.
amount of memory, fke Gor example on outomatic door, elevotor or digital * Definition! A Ginite automaton is o 5 — tuple (Q, %, & qo, F) where
watehes. L Q s o Gnite set caled the states.
* Fintte avtomata and their probabilistic counterpart “Markov chains” are vsetul A 3 is o Ginite set called the alphobet (Z'Ps\lon).
tools when we are attempting to recognize potterns n dato. These devices 3. 0:Q %% » Qs the tronsition Sunction (S‘\smo\).
are uvsed in s‘Pcu.\n 'Proc.css\ns ond n o'P‘Fw,cxl charocter r-:e.osn‘\ﬁov\. Morkov 4. qo0Q s the stort stote
chains have even been used to model and 'Pru\:\d' price changes n Cinoncial 5. FOQ is the set of occept states.
morKets. * K Ais the set of all strings that machine M oceepts, we soy thot A is the language of machine M
* The output of an finite automoaton is “accepted” € the automoton is now n oand write LAV = A, We soy M recognizes A
on accept state (ovdle cirele) and reject € it s wnot * Alanguage s coled o “regular language” i€ some Ginite automaton recognizes it
* A Ginite avtomoton is o list of Gue cbjects: * A Cinite avtomaton has only o Cinte number of states, which means o Snite. memory.
o Set of states o Stort stote o Rules Cor moving. * Fori-um‘l—e{j, Cor many lwnguoges (AI‘H\ous\n anj are Wkinite) you don’t need to remember the entire
© Input alphobet o Accepts states nput (which s not possidle Cor o Cinite automaton). You onlj need to remember certain erucial nfo.

* A Gnite automaton has o transition for every possible letter Grom the olphabet
oing out every possible state and no e transition.

THE REGULAR OPERATIONS
We define 3 operations on languages, caled the regulor operotions, ond use them to s‘\—u&j properties of the reguor languoges. Example! let the alphobet 3 be the stondord 26 letters {a, b, ...,

Definition: let A and B be languages. We define the regular operations union, contatenation and stor as Golows! z}. K lwnguage A = {good, bad} and longuage B = {boy, girl}, then
o Uniont AL B = {x | xO A or xU B} o A0 B = {good, bad, boy, girl}
o Concatenationt A0 B = {xy|xO Aand y 0B} o A0 B = {goodboy, goodgirl, badboy, badgirl}
o Stort A*={x1X2... Xk | k= 0and each x; J A} o A* = {g, good, bad, goodgood, goodbad, badgood, badbad,
The class of regular languages is closed under the Sollowing operations : union, concatenation, ntersection, stor and goodgoodgood, goodgoodbas, ...}
complement.
MOUDETERMIMISM
¢ Nondeterminism is o generalization of determinism, so every determinstic Gnite How does an NFA e.om'Pu*—e? Suppose that we are running an NFA on an nput string and come to a state
automaton is automaticaly o nondeterministic Ginite automaton. with multiple wogs to proceed. Fro example, say thot we are in state gl n NFA Nl and thot the next nput
* In o DFA (deterministic Gnite automoton), every stote always has e)wd—lj one symbol is o 1. ASter reo«\i\na that symbol, the machine splits into multiple copies of itselt and Colows all the
eXiting transition arrow for each symbal n the alphobet. In on NFA possibilities n paralel Each copy of the mochine takes one of the possible ways to 'Proe.td. and continues

(nondeterministic Gnite outomaton) o stote moy howve zero, one or mony eXiting os before. € there are subsequent choices, the machine splits again. € the next nput symbol doesn’t
arrows for each alphabet symbol. appear on any of the arrows eXiting the state ou.u'P‘\cA \33 o e.o'[? of the machine, that copy of the

* Nondetermnistic Gnite outomata are useSul n several respeets. As we wil show, machine dies, along with the branch of the computation associated with i Finally, € any one of these
every NFA con be converted nto an equivalent DFA, and construeting NfAs is copies of the machine is in an aceepts stote ate the end of the input, the NFA accepts the nput string:
sometimes easier than direct construeting DFAs. An NFA may be much smoller € o stote with on € symbol on an eXiting arrow is encountered, something similor hoppens. Without rm&‘ma

than its deterministic counterpart, or s Sunctioning may be easier to ony nputy the machine splits into multiple copies, one Colowing each of the eXiting € - labeled orrows ond
understond. one s‘hxj\vxa ot the current state. Then the moachine 'Prmea&s nonAc‘\—crm\v{\sﬁmo‘ll\j os before.
NFA — MUOUDETERMINISTIC FINITE AUTOMATA
¢ Definition: A nondeterministic Cinte automaton is o S — tuple (Q, 3, 8, qo, F), where * Determinstic and nondeterministie Ginite automaton recognize the same class of
L Q is a Cinite set of states. languages.
A Z s o Cinite alphobet. * Two machines are equivalent i€ 'H\c\j recognize the some language.
3.0 QX Zg - P(Q)is the transition Cunction, Zg = X0 {€} . Eve.r-:j NFA has on equivalent DFA.
4. q0Qop s the stort stote. * KK is the number of states of the NFA, it has K subsets of states. Each subset
5. FOQis the set of accept stotes. corresponds to one of the possiblities that the DFA must remember, so the DFA
¢ ln o DFA the transition function tokes o state and an nput sambol and 'Pkor\uc_e.s the next stote. simdoting the NFA wil hove JK states.
Ih & NFA the tronsition unction tokes o state ond an nput sbm\ool oF the am'P‘t'D string ond * Transforming NFA to DFA The DFA M occepts (means it is n an occept state) €
produces the set of posside next states. one of the possible stotes that the NFA N coull be in ot this point, is an accept
¢ Yor ony set Q we write P(Q) to be the collection of oll subsets of Q (Power ser o€ Q). stote.

* Alanguoge s regular € and cv\lj i€ some NFA recognizes it
Example. Sor transforming an NFA nto equivalent DFA :
L Determine D 2. D stort stote is the set of
G stotes thot ore reachable
states ! Z{D},
{1}, {2}, {3},
(1.2}, {13},
{2,3},{1,2,3}}
2. D start state s

Grom | \nb troveling along €
arrows plus the state | itself
= {13}

4. D accept states ore the
states containing state |,

the set of henee {1},{1,2},{1,3},1,2,3}
states that are reachable trom | by troveling 5. Then Sor each of the new b. F‘“‘*"J vnnecessary states ore removed
along € arrows plus the stote | itself = state, arrows are added for each Sjmbol of the alphabet Ac'Pem\"ms on what was
{1,3} possible on the NFA.
REGUIAR EXPRESSIONS
* DeSinition: Say that R is o regular expression € Ris * We con write I as shorthand Cor the regulor expression (00 1) . More
L o Gor some o W the olphobet 2. semraﬂj, €3is ony alphabety the regular expression X deseribes the
A €. languoge consisting of all strings of length | over that alphabet, and *
2. 0,1*0=0,0%={(e},Ro0=0 deseribes the language consisting of all strings over thot alphobert. S'w(\)o\rlj
4. (RIO R2) , where Rl and RY ore regular expressions. T*1 s the lwnguage thot contoins al strings that end n & L The language
5. (R10 R2), where Rl and RY are reguar expressions. (02*) 0 (Z*1) consists of al strings thot either start with o O or end with
b. (R1%), where Ri's o regular expression. ol
* The value of o regular expression is o languoge. * Precedence in regulor expressions! * >0 >[J
. R:aulw expressions have an important role n computer science applications. tn applieations nvolving * When we wont to make clear o distinetion between o regulor expression R
text, user moy want to seorch Cor strings thot sod-\s@s certoin potterns . 'Re_solm expressions provide o oand the language that it deserbes, we write LR +o be the language of R
Powertul method Sor (\esc.r"\\u‘w\s sueh potterns. * Dont confuse between the € regular expression representing the language
* Alanguoge s regular i€ and cvxlj i€ some regular expression deserbes it (Equ‘\wxlcv\e.c with Cnite containing the cm’Pi*J string on 4 the O representing the language thot
automaton) contains nothing.

* Zxample Cor converting o regular expression to an Ginite a -0 o aba . a . € . b . € . a @
Automaton (NFA) : b »

* This example consists of converting the Re (aOb)*aba -0

* See how the varicus elements are put n place step b:) step a

* See how the procks Cor the closing of Rcsdw l.w\auo\scs onder alUb (aUb)*aba

concatenation, union ond stor are used.

(aUb)*

GENERALIZED NONDETERMIMISTIC FIMITE AUTOMATON

e The Generolized Nondeterministic Finite Automaton s an important .
concept os it alows to tronstrom o Finite Astomaton to o —Kesulo\r
Expression. The Tranformation path is DFA — GNFA — Re.

¢ Definition: A semrml\u& nondeterministic Cinite astomaton, (Q, Z, d,

Qstart, Jaccept) 'S & S — tuple where

L Q is the Cinite set of states.

A Zis the input alphobet.

2.8:(Q —{qaccept})* (Q ~{qstart}) —» R is the transition Cunction. .
Y. Qstart s the stort state.

5. Qaccept 'S the accept stote.

* The GNFA reads bloeks of samboﬁ Sorm the nput, not v\e.c,cssar\lj Just CONVERT(G): Generotes o regulor expression R oot ot a
G\RA G

one sbmbol at & time as n an ordinary NFA.
* Yor convenience we require that GNFAs o\lwo\\js have o special form thot

meets the Colowing conditions! .

o The start stote has transition arrows going to every other state

but no arrows coming n Grom ony other state.

o There s ON:J o single accept state, ond it hos orrows coming n Grom ¢

every other state but no arrows going to ony other stote.
Furthermore, the oceept state s not the same as the start state.

o Exeept Cor the start and occept stotes, one arrow goes Grom every
state to every other state and also Grom each stote to itsel.

Step |1 From DFA to GNFA ! new stort state

Step O : The initial DFA
and occept state with € arrows.

We con eas\lj convert o DFA into o GNFA in the special Corm.

© We simpl add & new start state with on € arrow to the old start stoate oand o new accept state with e
oartows Sorm the ol occept stotes.

ol ony orrows hove multiple lobels (or € there ore multiple arrows going between the same two states in
the same direction), we replace each with o single arrow whose label s the union of the previcus labels.

o F\nmﬂj, we ol arrows lobeled [between states thot had no arrows. Ths last step won’ change the
languoge. reaosn\z_aA becouse o tronsition lobeled with [con never be vsed.

We let M be the DFA Gor loanguage A. The we convert M to o GNYA G b\j er\lns o new Stort state ond & new
aceept state and odditional trowsition arrows as necessary We use the procedure CONVERT(G), which
tokes & GNFA and retums on equivalent regular expression.

R-]Rs

let X be the number of states of G (the GNFA)

€K =, then G must consist of o start state, an
occept state and o single arrow connecting them and
labeled with o regulor expression R retum R

€K > 3, we seleet ong state qrip 0Q ownd &iCerent
Grom the start and oceept states and eliminate Wt Srom
G. We cbtain G where lobels between each qj and qj
other thon the stort and aceept stotes are as Colows
(see here)

Ra (RBA*R,) UR,

/DRGZ}

Exomple of DFA = GNFA — RE conversion, seeing every step :

aan

Step A ! Getting M of
stote | oand replocing
aMOWS oS appropriate

(baUa)(aa U b)*ab U bb
Step 3 ! Getting Md of the stote X and replacing arrows os

Step 4 ¢ last step : getting M of stote _)Q
5

3 and replacing the last arrows. The
resulting expression is the RE to be
returned.

MON-REGULAR LANGUAGES

¢ To unerstand the Ppower of finite automata you must also understond
their imitations. I this section we show how to prove that certain
languages connct be rcc.osvx"\?_:& \u; any Cintte automoaton.

* let’s toke the language B = {Onl [n20}. € we attempt to Gnd o DFA
that recognizes B, we discover that the machine seems to need to
remember how many Os have been seen so Car as Wt reads the nput.

¢ Becauvse the number of Os isn't limited, the mochine wil have to Keep
troek of an unlimited number of possibiities. But i+ cannct do so with ong
Cnite nomber of states.

o Oor technique Cor proving v\ovxresdo\rﬁ-b stems Grom o theorem obout
regular languages, +r-<x&‘\+‘\omﬂj coled the Pumping lemma. This theorem
states that ol regular languages hove o special 'Pro’PeH"j. € we con show
that o language dces not have this ?ropcr‘t—:), we ore Suarom‘t-ee& thot Wt is
not regular. The ?rofper‘t-j states that al strings n the language con be
“pomped” € ‘H\c%‘od't ot least as long as o certain special volue, called the
Pumping length. Thot means each such string contains o section that con

be. r-e;’Pcod-u\ oany number of times with the resulting string remaining n the

appropriate.

(a(aalUb)*abUb)((baUa)(aaUb)*abUbb)*((bala)(aaib)* Ue)Ua (aa Ub)*

. 'Pwv\'P"w\s lemmo: € A is & regular languoge, then there is o nomber p (the Ppomping k.vxs*H\) where, € s is
ony string n A of length ot least p, then s mag be divided into three pleces, s =xyz, smﬂs?jms the
Collowing conditions:

L Cor each i20,xyiz0OA
& lyl>0
3. |xy|<p
We note that y# €uwhle X oF z can be €

¢ To use the pumping lemma to prove that o language B is not regular, st assume that Bis regular n
orer to obtan o contradiction. The use the Pumping lemma to guarantee the eXistence of o pumping
length p sueh that oll strings of length p or greater n B can be 'Pum'Pc(\ Next, Gnd o string s B that
has length p or greoter but that cannct be pomped. Finally, demonstrate that s connot be pumped bj
e.onsﬂer‘\na ol woys of A‘\v‘«\‘w\s S wto %, y oand Z G—cxK\v\S condition iS of the pumping lemmo nto account €
convenient) and, Cor each such dvision, Ginding o vadue 1 where Xy z 0B . This Ginal step often nvolves
grouping the varicus ways of “‘.‘V“\“‘“ﬁ s wto several coses and Anons'\r\s them in&}vﬁumﬂj. The existence of s
contradicts the pumping lemma € B were regular. Hence B cannct be regular.

. F'w\\r\s s sometimes tokes o bit of creative thinking. You may need to hont through several condidates Cor
S before yoo discover one that works. Tr\j members of B that seem to exhibit the “essence” of B’s

language. vxow-esulo\r\ﬁv.
Exomple. | Exomple pY Exomple 3 Exomple 4
« let B={0"1"|n=0} * C={w | w has an equal number of Os and 1s} « D={a"|n20} o E s deseribed by the Re 0*1*
* We suppose that B is regulor * Suppose Cis reguar ond p the pumping length * let's assume that D is regular * The minimum pomping length is |
o let p e the 'Puvxr‘w\a length o let s=0”1P then s=xyz and also xylz oc * et s be string adp then sTkyz * The pumping length connct be O
+ We choose s=0"1 o K we toke y=0P1P ond X and z be empty then Thrd condition tell that |xy| < p. becavse € is W the languoage
* $=Xyz also xylz OB. This is impossible because! xylz oc!? Forthermore p < 2 and s lyl < 2P . Ever-b nov\‘zm'P'rD string n the
°© K yconsists only of Os, then xyyz OB e BUT the condition 3 ([xy| <p) s not o Therefore [xyyz| = |xyz| + |y| < 2P + 2P = 2P 1 lwnguage con be divided nto xyz
(more Os thon 18) respected * The second condition requires |y| > 1 so 2P wiere x = € and gy is the Grst
© K 4 consists 0“'3 of Is, then xyyz OB * Thus 4 must consist ov\lj ok Os (or ov\lj of 1) < |xyyz| <P charocter ond z is the
© K 4 consists of both Os and Is, then xyyz e BUT xyyz OC i this cose * The length of Xz cannot be o power of A remainder.
OB (Uisorder o€ Os and Is in s) * Thos C s not regular Henee ¥ygz- s not & member of D. * Hence is regulor

* Ths B is not regular (controdiction)

Chap X ¢ Context-Free languages
INTRODUCTION

* Thus D s not regolar

In this chapter we ntroduce context — Gree grammors, o more powertul method, thon Gnite auvtomato and regulor expressions, of &cse.r‘\\u‘ms languages. Such grammors con deseribe certoin

Ceotures that hove o recursive structure which mokes them useful n o vo\r"\d-:) of applications (s‘h.ulj ot humawn languages, compilation of prog. Lomsmscs).

CONTEAT-FREE GRAMMARS

* A grommor consists of o eolleetion of substitution rules, also coled productions. Each rule appears

as a fine in the grommar ond comprises a symbol and o String, separated by an arrow. The sambol

is coled o variable. The String consists of variables and other symbols called termnals. .
You use o grammor to deserbe o longuoge bj generating each string of that language n the .
Sollowing manner.

A“j language thot can be 5eﬁcrm+e<\ bj some context — Gree grommar is coled o
context — Gree language (erD.

The class of contexttree languages is closed under union, concatenation and stor.
The class of contexttree languages is NOT closes under intersection and
concatenation

L Write down the start voriable . It is the vorioble on the lef+ — hand side of the top rule, unless Example

specified otherwise. * G=(VE\R,S) S — NP VP

A Find o variable that is written down and o rule that starts with that variable. 'Re.'Plo\c_: the * Z={that,this,a,the..man,book,flight,meal,include, - Det NOM VP

written down voriable with the Fght — hand side of that rule. read,does} — The NOM VP

3. 'Re.'Pe_zx*l» step A untl no voriobles remoin. ¢ V={S,NP,NOM,VP,Det,Noun,Verb,Aux} — The man VP

Al strings Se,nc.rm‘fe.& W this way constitute the language of the grommor. We write (G Gor the ¢ S=S — The man Verb VP
languoge of grommor G. R={S — NP VP | Aux NP VP | VP — The man read VP
Definition: A context — Gree grammor is o 4 — tuple (V,5, R, S) , where NP — Det NOM — The man read Det NOM
L Vs a Gnite set called the voriables. NOM — Noun | Noun NOM — The man read this NOM
L I is o Cinite set, disjoint Grom V, coled terminals. VP — Verb | Verb NP — The man read this Noun
3. R is o Ginite set of rules, with each rue being o voriable oand o string of variables and terminals. Det — that | this | a | the — The man read this book
4. SOV is the stort varoble. Noun — book | flight | meal | man

We writeu 0 v € U= vor € a sequence upuy,...,uk exists Gor k= 0 and Verb — book | include | read

uld wO wid.Owidv Aux — does

The language of the grammor s {wOz*|SO w}
DESIGNING CONTEAT-FREE GRAMMARS

You con convert any DFA into on equvalent CFG as Collows. Moke o variable .
Ri for each state (i of the DFA. Al the rue Rj - aRj to the CFG € 8(qi,

a) =qj \s a transition n the DFA. AU the rde Ri—€ € gj s an accept state

o the DFA. Make Ry the stort voriable of the grammor, where (o's the .
start stote of the machine. Veri€y on your cwn that the resulting CFG
generotes the same language thot the DFA recognizes. .

K o grammor generates the same string n several &Cerent wogsy we. sy thot the string is derived
o\mb‘\suouslj n that grammor. I€ o grammar generates some string amb\auouslj we say that the groammor is
Amblswus.

A derivation of o string w n o grommar G is leStmost dervotion of ot every step the leftmost remaining
vorable is the one re'Platu\.

A string w is derived o\mb\suousl\j n context — Gree grammor G € it has two or more diSCerent leStmost

dervotions. Grommor G s ambiguous € it generates some string amh}suousb.

CHOMSKY NORMAL FORM

* A context — Gree grammar s n U\omska normal Corm, €

side)

every rule is of the Corm

o A- BC
o A-a

¢ where o is any terminal and A, B and C are any voriobles — .
except thot B ond € moy not be the stort voriable. In .

addition we permit the rde S - €, where S is stort voriable.

. Anj context — Gree |N\Soo\sc s aenu-od-u\ bj o context — Gree 'Prtv\ouslj removed

grammor in (‘,thSKJ normal Sorm.
Exomple.

the new rule Ui =

S — ASA | aB Al new start Sy Remove € rdes (D Remove € rdes Q) Remove unit rules(D Remove unit roles Q) Remove wnit rules(3) Remove onit ries (1)

A-B|S So =S So—S So =S So—S
B-b|e S—->ASA|aB S—»ASA|aB|aS—-ASA|aB|a|]S—ASA|aB]|a|
A-B|S A-B|S|e SA | AS |S SA |ASHS
B-b|e B- b }€ A-B|S}e A-B|S
B-b B- b

PUSDOWN AUTOMATA (PDA)

* These oautomota oare ke NFA but have an extro component called o stoek. The stoek
’Prov‘\Acs additional memory be.:jov\A the Cnite amount ovallable W the control The staek
allows 'Pushrlown astomata to recognize some Nonregulor languages.

* Pushdown automato are equivalent n power to context — Gree grommars.

* A stoaeK is valuable becoause it can holl an unlimited amount of nkormation.

* The current state, the next nput Sjm\uo! read and the top sbm\ool ot the stoek
determine the next move of o 'Pushc\.owv\ outomaton.

¢ Definition: A 'PUS\\AQ\U!\ outomaton is o b — tople (Q,Z,T, 3, qo, F)y where Q% and F
are ol Ginite sets, and

Exomples
b,a—¢&

8
()
.

€,$—e

E,E€E

L We add & new stort variable Sy and the rde Sy = S <suaranfccs thot the stort vorioble cceurs onlj on the lefthand

A We remove all €rvles Gin the Sorm A = € where A ZS). K we Gnd o rule in the Sorm of R = UAV then for each
oceurrence of A we add o new rue R = uv (note thot U and v are strings of variable terminals)

K we hove R = UAVAW then we add R = uvAw, R = uAvw ond R = uvw

K we hove the rule R = A, we add R = € unless it has already be removed
2. We remove ol unit rules W the Corm A = B ond Cor each rule B = u we odd the rule A = U unless this is o unit rule

4. We convert remaining rules A = Ujup...Uuk where k>=3 ond U s o variable or terminal sgmbol to the rles A = ujAj, Aj
- WA Az = WA and Ak = uk-uk- € k=2 we rc'Phe.c n these rules and terminal Uj with o new vorioble Uj ond

Ui.
'Pr-o'Pu- Corm

So— S+ ASA | aB |a|So —» ASA | aB | a| So—» ASA | aB | a] So— AA:| UB | a|SA | AS

SA |AS SA |AS SA |AS S—>AA;|UB|a|SA|AS
S—>ASA|aB|a| S—>ASA|aB|a|S—ASA|aB|a]| A -S| b| AA;| UB | a| SA
SA |AS SA |AS SA |AS | AS
A-B|S A-B4S|b A-S-}b | ASA| aB |A;— SA
B- b B— b a | SA |AS U-a
B-b B-b

L Q is the set of states.

A Z s the nput alphabet.

3. [is the staeK alphabet.

4. 0:QegXxZg xTg - P(QxTg) is the transition Cunction.
5. qo JQ s the stort state.

b. FOQ is the set of accept states.

We write ab —c to s\sn\(:a thot when the machine s rc.m\\ns on a Grom the nput it moy replace the
s‘jmbcl b on the top of the staek with o C. Ang of 3, b and ¢ mag be € K a is €, the moachine moy
moke this transition without re_m\"ms ony s mbol Sorm the nput. K€ b is €, the machine moy moke this
Honsition without r:o«\'\na and PoPping ony s\jmbcl Gom the stock. K ¢ is g the machine does not
write ong sbmbol on the staeK when going along this tronsition.

C,€—¢ PDA M that 0,€—0
. recognizes 1,e—>1
ik ..
@ {a bl |ij,k=0
and i=j or izk} E,E—E
See the

nondeterminism here

PDA M that recognizes
(0™ |n 20}

®

E,E%E‘@ €,8—¢

Ivf

PDA M3 thot recognizes
(wwR | w 070, 1% } and wR means w written baekwarks

a,e—a b,e—=e c,a—E
EQUIVALENCE WITH CONTEXT-FREE GRAMMARS
* Alanguoge s context Gree i€ and ov\lj € some 'Pus\w&own automaton recognizes it . Eve,r-j regulor language is context — Gree.
Converting o LFG to o PDA, method &
L Plce the morker s\jmbol $ ond the start voriable on the Example Cor the CYG : S —aTb|b
stoek T—Tale
A 'Re_'Pe.od- the Colowing steps Cor ever @
L K the top of the stoeK is a variable symbol A, non™ e, A=w forrule Aow
&e}'cr-m‘m\sﬁc.oJIb seleet one of the rules for A and a,a—e for terminal a
substitute A by the string on the Fight~hond side.
A K the top of the staek is o terminol st\uol a, read
the next sbmbcl Grom *I?\e_ nput and compare it to a.
K they moteh, repeat (consume i Grom the nput and .
the stoek). l?ﬁ-hf do not mateh, reject this bll:o\mk an\c meih?«\ stove assumes the Solowing
Y) shorteut :
the non-determnism.
3. K the top of the stack is the Symbol $, enter the e
oceept stote. bow\s so aceepts the nput FF it has P

all been reod

Converting & PDA to o CFG, method :

* First we simplity our task by mo&‘&j\v\a P sl\5h*H3 n order to give the Golowing three Seatures .

L ¥ has o S’w\sle, occept stote, Gaceept
A empties its stack before accepting
3. Zach tronsition either pushes o synbo! onto the staek or pops one off the stacek,
ot the some time

* To gue it Geature 3, we replace each tronsition that s‘w\d*o\v\e.ouslj POps and pushes
tronsition sequence that goes through o new state, and re.’PIM_C. each tronsition that

Sa:) thot P=(Q, 2, T, 6, do, {qaccept}) ond construet G. The varables
ot G are {Apg| P,g €Q}. The start variable is Aqo,qaccept. Now we
deseribe G’s rules

Yoreach P, Q, I,SEQ, tET, ada, b€ X, €8(p, a, €) contains (r,
t) and 6(s, b, t) contans (g, €), put the rule Apg—aArsb w G

Yor each P, Q, T € Q, put the rde Apg—= AprArg n G

F"\mﬂ\j Sor each P € Q, put the rde App > €£in G

but does not both .

with & two .
neither pops nor .

pushes with & two transition sequence that pushes then pops an cxrb\ﬁ-r-o\r‘j stoek sbmhol

PUMPIVG LEMMA FOR CONTEXT-FREE LANGUAGES

K Als o context — Gree loanguage, then there is o nomber p (the Pomping le.v\sﬂ\) where, € s is L For eachi=0, uVlel zOA

any string n Aot IU\SH\ ot least Py then s moy be divided into Gue Pleces § =uvxyz 50#‘\5@5\'\5

the conditions:
let+ B={a"b"c" | n> 0}
* We suppose that B is a CFL let’s try to Gind o contradiction

e B s a CFlL then there is o P (the 'P”""'P“"S lev\sﬂ\) whetre the selected s‘l—r‘ma s=aPbPc? is n B. The 'P""“'P““S

lemmo stoted that s coan be 'Pum'Pu\, but we show that it connct.
* B=uvxyz. Condition X states thot either v or 4 ore non empty. Then we consider one

© When both V or y contain ov\lj one *p'Pc of adphobet sambd,‘ v (the soame Sor y) does not contain both a’s
ond b’s oF both b’s and ¢’s thus uv’ Xyzz connct contain equal number of a’s, b’s and ¢’s

o

When either v or y contain more thon one +J'Pe ot snmbol, ulele moy contain equal nombers of Smeols

A |vy|>0
3. |vxy|<p We note thot either VZ Eory# €
let C={ww | w€{0,1}*}
* We suppose that C is o CrL. Let P be the pumping lenaﬂr\ gven bb the
pumping lemmon. We show that the string x=0"1P0P1” cannct be pumped.
The string s con be dvided nto S=UVXyz.

of the two coses! o

VXY con neither be ot the beginning of the string s or ot the end
because s is symmetric and hence uVZX % connoct be 'Pum'Pu\.
vy stroddles W the m‘\A’Po‘w*k of s: 0PI mO"’llp W this cose,

2. .
uv'xy'zis not wn C.

but not n the correct order. Hence it connct be o member of B. Contradiction
Chap 3 i The ChurekTuring thesis
TURING MACHINES

¢ Simlar to a Snite astomaton but with on unlimited ond unrestrieted memory, o Turing mochine
s o much more aceurate model of o general purpose computer. A Turing machine can do
cvgrjﬂ{ms that o real computer con do. Nonetheless, even o Toring mochine connct solve
certain problems. n o very real sense, these problems are be_jov\& the theoretical limits of
t.om'Pu‘\wl-‘\om

* The Colowing fist summarizes the diGerences between Gnite automota and Turning mochines!
L A Turing machine can both write on the tope and read Grom it
A The reod — write head can move both to the left and to the Fight.
3. The tape is nfinite.
4. The special states Cor rejecting and aceephing toKe immediate effect.

LI o\d-qu\ﬁ-\j we almost never gve Gormol &csui’Pﬁons of Turing machines because H\cb tend to
be. very big.

¢ DeCinition: A Tur-?ns mochine s o 7 — "hJ’Ple (Q, 2, T, d, qo, Qaccept, Qreject)y where Q,Z,I" are ol
Gnite sets ond:
L Qs the set of states.
A Zis the input alphabet not contoining the special bloank Sjmbol _
3. [s the tape alphabet, where [ad 20T
4 4:QxT - QxT x{L, R} is the transition Cunction
5. qo 0Q s the stort stote
b. Qaccept 0 Q s the accept state
7. Qreject 0 Qs the reject stote, where qreject # Gaccept

CONFIGURATIONS OF Tm

¢ Intialy M receves its nput W=Wwi w2 ... Wn O5"cn the leftmost n squores of the tape, .

ond the rest of the tape is bank.

* As & Toring mochine computes, changes oeeur in the current state, the corrent tope
contents, and the current heod location. A setting of these three items is caled o
configuration of the Turing machine.

* A configurotion is represented as UQV where U ond Vin M ond g in Q
0 The current state is
© The current tope content is UV
© The current head of the tope is the Grst symbol of v

. SU’P'POSQ_ that @, b, ond Cw T, ond Uond Vi [,

o uaqibv gels ugjacv € 5(qi , b)=(qj, c, L)

o uagibv Yels uacqjv € 8(qi , b)=(qj, ¢, R)

o qibv 3‘\&' qjcv € 6(q| , b)=(qj, C, L) (heod on the left hand end)

o qibv j\d&s cqjv € 6(ql, b)=(g2, c, R) (heod on the left hand end)
© uagiis equvalent to UaQi N i€ the head is on the right hand end

Properties of configurations : .

¢ The stort tovx@\sur-od-‘\on s qow
¢ w:_t_epﬁns e.ov\@'\sur-mﬁon the state s qaccept
¢ rejeuﬁns ton@%urod‘"\on the state s Qreject
* Accepting and rejecting configurations are halting configurations
EXAMPLES OF TURING MACHINES
M, decides A= {07 |n =0}
MY = “On nput string w!
L Sweep left Yo Hght across the tope, crossing of€
every other O
A Kin stage |, the tape contained o single O, accept.
2.

Moachine M State A\Asro\m

€ n stage |, the tope contained more than o single
0 ond the number of Os wos odd, reject.

* We get o contradiction with the pomping lemmoy, thus C is wot o CFL

* Tor o Turing machine, d tokes the Sormi d:Q X — Q X T x{L, R}. That is, when the
machine is n o certain state 1 and the head is over a tope square containing the
symbol 2, and € d (ql, @) = (g2, b, L), the machine writes the Symbol b replacing the a,
ond goes to stote 2

* For o Turing machine, 8 tokes the Gorm! 8:Qx [- QX I'X{L, R}. That is, when the
mochine is n o certain state (i and the head is over o tope square containing o
symbol o, ond € 3(q1,a) = (g2, b, L), the mochine writes the symbol b replacing the o,
ond goes to state Q2

* The collection of strings that M accepts is the loanguage of M, denoted LAV,

* Coll & language Turing — recognizoble € some Turing machine recognizes it

¢ When we start oo TM on an nput, three outcomes are possible. The machine ma
accept, reject, or Ioofp. Ej |oo'[> we mean that the mochne s\m'Plj does not halt. I is
wot V\tc.tSSO\P.\IJ repeating the same steps in the same woy Corever os the
connotation of looping may suggest. Loo’Plna moy ental ony simple o complex
behaviour that never leoads to o holting stote.

* We prefer Turing machines that halt on all inputs; such machines never loop. These
mochines are caled deciders becauvse 'H'\EJ DJL.UD\JS moke o decision to occept o reject.
A decider that recognizes some language also is sold to decide that language.

* Col o language Toring — decidoble oF SR’V\'PIJ decidoble € some Turing mochine deedes

¢ Zuery decidodle languoge is Turing — recognizoble but certoin Turing — recognizable
languages are not decidoble.

A Turing mochine M occepts nput w € o sequence of configurations Ci,Cs,...,Ck eXists
where

L C| s the stort configuration of M on nput w

A Each Cj J‘\clt\s Cit+1

3. Ckis an accepting configuration.

Configuration of abAaaBAbgabbbBA :

q

I
[olofalafafnfafefafofe]o]s]alefafefe] i

K AN -
Y N

o w

A Turing mochine M aceepts nput W i€ o sequence of configurations Ci, Co, ..., Ck exsts
where

© Ci s the start configuration of M on nput w

o Each G j\d&s Ci+1y and

© Ck s an accepting configuration

Mochine Ml State diagrom :

4. Return the head to the lefthond end of the tape.
5. Go to stage L7

M3 decides C= {a'b/c"|i*j=kandijk=1}
M2 = 70n nput string wi
L Scan the wput Grom left to Hght to determine
whether it is o member of atbtct and reject € it s
not.
A Return the head to the lefthand end of the tape.
3. Uross of€ an @ ond sean to the Fght ontl o b
oceurs. Shuttle between the b's and C's, erossing of€

one of each untl all b's are gone. € ol C's hove been ackine MY configuration example Sor nput 0000

crossed of€ and some b's remain, reject.

4., TRestore oll the crossed of€ b's and repeat stoge 3 10000 1g;X0x
i€ there \s ancther a to eross of. K all a's hove been Lg2000 5-x0%u
crossed of, determine whether all ¢'s also have been ux(300 ugex0xL
erossed o€ K€ 4esy aceept; otherwise reject: 1x0g40 Uxga0xu

ux0xgzu LXX(3XU
ux0gs xu LIXXX(3U
uxqs0xu LXX(5XU

PROPERTIES OF TURING-X'ABLE LANGUAGES

The colleetion of Tur-‘ms'kc\(\oxble languages is closed under union, concatenation, stort,
complementation ond intersection
VARIANTS OF TURING MACHIVES
* The orignal TM model and its reasonable varionts oll have the same Ppower — ‘H\&j .
recognize the same class of languages.
¢ To show that two molels are equivalent we s\m’Plj need to show that we can simulate
one by the other.
* A mutitope TV is Ike on or&‘w\wj Turing mochine with severol topes. Each tope has its
own heod Sor r-ux&‘w\s and writing. lvx\‘}'\o\llj the wput appears on tope |, and the cothers
stort out blonk. .
* Two machines are equvalent i€ ‘H\ej recognize the same language. .
. Eve_rj multitape Turing mochine has an equivalent single tope Turing machine.
* Alanguage is Turing — recognizable i€ and onl‘j € some multitape Turing machine .
recognizes it .
* A nondeterministic Toring machine is deCined n the eX‘Pec:t—eA way. At ony point n o .
computation the machine moy 'Prcx.tu\ o\e.e.om\.'ms to several possibilities. The transition .

UXg5XxU M decides B = {whHw | we{0,1}*}

U5 XXXu M = “On nput string wi

(5URRRU 8 L"x{bs across the tape to corresponding 'Pos‘\ﬁcfrts on eﬂ-he‘r—

Lo XXXL side of the # symbol to cheek whether these positions contain
the same sgmbol. € they do oty or € no # is Gound, reject

HX(JpXXU Cross of€ symbols as ‘chb ore cheeked Yo Keep troek of which

UXX (XU ssmbols correspond.

LXXX (U A When ol sgmbols to the left of the # hove been crossed off,

LXXXUgcoept cheek Cor any remodning Sjmbols to the Hght of the #. K€ any

s:)mbols remoun, reject; otherwise, aceept.”

The collection of Turing recognizable languages is closed under union, concatenation, start ond
ntersection (NOT t_om'Plcm:MwHon)

The computation of a nondeterministic Turing moachine is o tree whose branches torrcs'PonA
to dfCerent possibilities Gor the machine. (€ you wont to simulate o nondeterministic TV
with o “normal” TM you have to perform o breadth — Crst search through the tree,
becouse with Ae.'PH\ — Qrst you con lose yoursel in o Wlinite branch of the tree and miss
the oceept stote). K some broneh of the computation leods to the oceept state, the
mochine accepts its input.

Zvery nondeterministic Toring mochine has an eguivolent deterministic Toring mochine.

A languoge is Turing — recognizable € and ovxl‘j € some nondeterminstic Turing mochine
recognizes it

We call & nondetermnstic Turing mochine o deelder € all branches halt on al nputs.

A languoge s decidoble € and onlb € some nondeterminstic TN decides

Looselj defined, an enumerator is o Toring machine with an attoched printer.

A languoge is Turing — recognizoble € and cvxl‘j € some envmerator envmerates it.

function for o nondeterministic Turing machine has the Sorm 4:QxT - P(Qx T x{L,R})

THE CHOMSKY HIERACHY of LANGUAGES

Grommor Lansmses Autocomaton Produetions

Type-0 Turing -recognizable Turing machine a—B
(Recursively enumerable) (no restrictions)

Type-1 Context-sensitive (LBA) Linear-Bounded non AAB — ayB

deterministic Turing machine

THE DEFIMITION OF AN ALGORITHM

. lv\‘éormaﬂj y on algorithm is o colleetion of simple nstruetions Cor cartying out some task.

* Aonzo Chureh used o nototional system called the A ~ calevlus o define algorithms. Turing
& i with Ks “mochines”. These two definitions were shown to be equivalent. This
connection between the nformal notion of algorithm and the precise deCinition has come

to be caled the Chureh — Turing thesis
Chap 4 be.e_\(\&b‘\l“'s
DECIDABLE IANGUAGES

Acceptance problem e)vpressel as languages Cor regular expressions:

Apra = {<B,w>| B is a DFA that accepts input string w}

ADFA s o decidoble lmnsmse.

ANFA s o decidoble languoge.

Grommor-

Type-2

Type-4

Autoomaton
(Non-deterministic)
Pushdown automaton
Finite State Automaton

Longuages
Context-free

Regular

Produetions
A—y

A—a
A — aB

The Chureh—Turing thesis! Intuitive notion of algorithm is equal Yo Turing machine algorithms.
Our notation Sor the uw.c&‘w\s of on objeet O into its representation as a string is <O>. K
we have several ohjects 01,02,...,0k we dencte their u\tcx\'w\s nto o single string BJ <01,02
4 O
An algorithm MJS stops.

A p¥A ANFA
M
B o lafor A /
Bw &wy 7 comerct
i VEA B
B +o ID?A

TI M decides Apra. The input of M is o pair <B,w> where 71 1 oo) ! -
ecl DFA- The input o 'S o pair WHEFE TN N decides AnFa ond behoves os Sollows on an nput <B,W> 1y P lecides AREX ond behoves as Sollows on an nput <R,w> where

R s o regulor expression oand W is & string.

B is o DFA and W is o string.

L M simulates the DFA B on the nput w.
A K€ the simuation ends n an accept stote, accept;

otherwise, reject.

™

p———

-]

Anra = {<B,w> | B is an NFA that accepts input string w}

where B is o DFA and W is & string.

L N converts the NFA B into equivalent DFA C
A N rons the TM M built Sor Appa

ARrgx = {<R,w> | R is a regular expression that generates string w}

AREX 'S o decidoble |N\Smse.
A ke - o

I —

AveA

R —

L N converts the reg exp R wto equivalent NFA B

A N rons the T M built Cor ANFA

The problem of testing whether o DFA B accepts on nput w is the same as the problem of testing whether <Buw? s o member of the languoge DFA A . Simlary, we can Cormuote other
computational problems in term of testing membership n o language. Showing that the language is decidoble is the same as showing that the computational problem is decidable.

Zmptiness testing for regular expressions!

Epra = {<A>|AisaDFAand L(A)=0 }

This meowns, that no string eXists that DFA A accepts.

EDFA s o decidoble language.

The next theorem states thot testing whether fwo DFAs

recognize the same language is decidable:

EQpra s o decidoble loanguage.

T 7‘?0?4 N A A R - o "77777;01"’?74
i T B - N
I . _ hegh
Mark ticuaively. "3"""“/
|_edcl newlt alufy B
A}VLLB < . f"'!l h S R
s -
. ' ° o\

EQpra = {<A, B>| A and B are DFAs and L(A) =L(B) }

context — Gree languages:

AcrG s o decidobde languoge.
T Acrg N

Acceptance problem e.x'pre.sse.(\ as languages Cor

Acrc = {< G,w >| G is a CFG that generates string w }

Cab il
decivalions

willy 2w~ [
olera, S

w.‘u
Tafol ™
— e

TM T decides Eppa. The input of T is o singleton <A> where A
s o DFA .

L Mok re.uors\vd\j each next stote, starting Grom the stort

stote

A € the Gnish stote is NOT morked, aceept; otherwise,

reject

Language inclusion testing Sor regular language

INCpra = {<A,B>| A and B are DFAs and L(B)
Nea : Show that L(B) n L(A) = L(B)

Buldl DFA C that accepts L(C) and use machine bult Sor EQprpa

EZmptiness testing for context — Gree
srammars:
Ecrg = {<G>|GisaCFGand L(G) =0 }
EcrG s o decidoble lmnsuase.
TN R deeides Ecrg. On nput <G> where G is
o UYG, G does ¢
L MarK all terminal s:)mbols on G
A 'Re.'Pc.o:f step 3 untl no new variable get
marked
2. MarkK any voroble A where G has o rule
A — UjUs...Ug ond each symbol
U1Uz...Uk hos already been morked.
Y. K the stort vorioble s not marked,
accept; otherwise reject.

where both A and B ore DFAS!

OL(A)} / INCpra s decidoble

TM Q decides EQpra and behaves as Golows on an nput <AB> |

L | construet o DFA C with lw\;uc\st () deSined ast A
L(C) = (L(A) n L(B)) O (L(A) n L(B))
A N rons the TM M built Cor Eppa

is o UFG and W is & string!

Corm,

——— T S Cor ACFG behaves os Solows Sor an input <G,w> where G
Convert G n on equivalent grammor n C,\r\omSKD normal

List oll derwotions with 2m — 1 steps, where n is the length

of W, exeept € n =0, then nsteod fist oll derivotions with |

step

3K any of them generates W, accept; € not, rejeet;

Universal language for regular language

ALLppa = {<A> |A isa DFA and L(A) = ZD} / ALLDFA is o decidable lw\smsc

Weo : Consider ALLppa = {<A>|Ais a DFA and L(A) = 0} that con be decided using Epra

Zquivalence testing Cor

Then the complement of o decidode languoge is decidoble.

context — free grommars?
EQcr = {<G,H>|G and H are
CFLs and L(G) = L(H) }

EQcrG s NOT decidable "
Proving EQcrg the way we
proved EQpra is ot Seosible
becouse ContextTree languoges
are NOT closed under

ntersection and e

complementation.
We wil see later the technique

- The Halting problem

Diagonalizotion :
<M1> <M2> <M3>
M1 A R R
“M2 R R A
M2 A A R
__E_, D R A A

Suppose His o decided Gor AT, On input <M,w> where M is
accepts w. Mochine D hos H as subroutine. D eals H to determine what it does and does the controry. Here D

'T;ATM ={<M,w >|MisaTM and M accepts w }

<D>

ATM is undecidable but it is Tur'\v\s—rce.osn\muc.
“hence ATM s sometimes colled the ktxH"\V\S 'Problem

a TN ond W is & string, H holts ond accepts € M

o > > w

used to prove thot EQcro s noteamnot the controry as tsel, hence we have o contradiction, Hence Apy s not decidoble (See b\asonaﬁm+\on

decidoble. obove)

TURING DECIDABLE / TURING RECOGMIZABLE
* Contor chserved that two Sinite sets have the same size € the elements of one set can be ’Poi\r-d with .

the elements of the other set.

+ Assume A and B are tuo Ginfinite) sets. € then exists a bijektive Cunction € between the two sets, H\e‘j

howe the some size.

* A set B is countalle € either it is Gnite oF it has the same size as the natural numbers N.

+ Q (rotional numbers) and N hove the some size.

+ R (real numbers) is uneountoble.

i} shows thot some lw\suases ore not decidable or even Tur-‘w\s - rgtosn‘\mble, Cor the reason that there
are uncountable many lcxv\amscs 3&1‘ or\lj counhxblj mowng Tur-‘w\s mochines. Becouse each Tur‘\r\s mochne

con rao_oav{\z_: o s‘mslc Iomsoo\sc and there are more sznswscs thown Tur"\vxs moachines, some Imnsuascs ore .

not recognizable bj) Toring mochine.

Choap 5 'Relue_'\b\h"-ﬁ

UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY

Some languages are not Turing — recognizable.

The Collowing theorem shows thaty i€ both o languoage and its complement
are Thuing — recognizable, the language is decidoble. Hence, Cor an
undecidoble languoge, either it or its complement is not Truing —

recognizoble. We say that o language is co — Turing — recognizable € it s

the complement of o Turing — recognizable language.

A languoge s decidable < it is both Toring — recognizable and eo — Toring —

recognizoble.

A languoge s decidodle = s complement s decidable.

ATM s not Turing — recognizable.

* I this chapter we examine several additional unsclvable problems. n &o\ns so we .
ntroduce the primary method Cor proving thot problems ore Lom‘Pu‘i‘o\ﬁomﬂj
unsolvable. I is coled rec\ue_"\b\f\ﬁ-J.

When A is reducible to B, solv‘w\s A connct be harder than solv‘\r\s B becouse a solution to B slves o
solution to A I terms of Lom’Pu‘fo\b\MJ ‘Hweor?, € Als redocible Yo B and B is decidoble, A olso s
decidoble. Equ‘\valenﬂj, € A is undecidable and reducible to B, B is undecidoble. This last version s Kej
to proving that varicus problems are undecidoble.

¢ Riee’s theorem: Testing ong 'Pro'}xr‘}-j of the languages ratosv{\uc\ bj o T s undecidoble.

Etm = {<M>|Misa TM and L(M) = O}
Etm s undecidoble.

* A reduction s o way of converting one problem nto ancther problem 1 such o wo
that o solution to the second problem con be used to sole the Grst problem.

HALTt™ = {<M,w>| M is a TM and M halts on input w}

We need as special mochine Mj—-—-— A 724
which on input X, behoves as — *1 e
HALTTM is undecidoble Collows. - -
j o A_TM i ,,‘ 7_ B) - LK X #w, reject. -
L A kx=w, r:m\Mcm nput W ,,ﬁ;,hmd.r -
5 ond oceept € M does.
Assuming thot o TM R decdes M 7| 2!1 w7 g{ ‘;;l- i
ETMy we construet TM S thot ';] | ¢ma>
- deedes Arme On nput <M,w>, . ‘0,..,__‘ .
~ S behoves as Colows. IR 7(/}9'4“7‘ o
\. Use the t\esc_r\’PHon SMand | . e,
w to construet M. . . AU U NG DU S WS N S G —— - .
2. Ron R on nput <MI1>. e e e kL
5 2. KR aceepts, reject; R — e B GRS S S GO W T -
- - reject, accept
§ e e _— —t Ac_con\'ms the above construction, we observe thot S decdes Ay, which s o contradietion. Hence, Ery s
We operote o redvetion Srom ATm o HALTTM. We buld oo T S :\e&u\‘ms ATM oS undecidoble.
Collows, on wput <M,w> where M is o TM and W a String *
L Ron TM R on nput <Wyuw>
2 KR rejects, reject
3. kR occepts, simulate M on w untl it halts
4. €M has o\me’P‘ku\, accept; otherwise, reject
EQmm { <M; ,M2>>| M and M are Eqm HALTALLwAYS = {<M>| M is a TM
TMs and L(M1) = L(M2)} B that halts on any input}
EQmm s undecidoble. - A M, buller buld M}, M on \NPU‘\' X WALT ,ﬁM" » A
We assume that TM R decides EQqm T 7 TR XEW, reject Y A A —
EQrM ond we constroet TM M)) A / S8 X=Ww, ron M on W and occept ~
that rejeets all nputs Ge. it < L, s 1—;; R €M occepts w Ge M loops or ’"')7 &
occepts the cm'P‘t'\j lo\nsmst . -7 /o rejects, undefined) B -
We construet o decider S that 1 Hence) R
rons R on <M\M > where M s 14 R -eM oceepts W = M; oJuJo\Ds ™
the nput of Etm. € R occepts, butde R holts \ 4
aceept; otherwise, rejeets. \‘ r-_‘) =& M does not accept W => M, ’ o —
= Contrad =>Thus EQTm not does not alm‘js halt

decidable B
ETM is Turingrecognizoble (deo : we bull an envmerator for Z* and we gve oll the words Wt bulds to M. We stop when o word s
Q‘mmll\j AQ.C.C.’P‘\‘C.U
Hence ETMis not turingrecognizable, see proot below :

Notes on Em’
Etm = {<M>|MisaTM and L(M) =0}
Erm={<M>|MisaTM and L(M) # O}
MAPPING REDUCIBLITY
. RousN3 speaking, being able to reduce problem A to problem b:) using o Mapping Pe‘\uu‘\b\l‘\‘i-j means thot o computable .
function exists that converts nstances of problem A to instonces of problem B. € we have such a conversion .

The Sunction € is called the redvetion of A to B.

K A< mBond B is decidoble, then A is decidable.

K A< ;mBand A s undecidoble, then B is undecidable.
KA<ShBond Bis Turing — recognizable, then A is Turing —

Cunetion, caled o reduetion, we con solve A with o solver Sor B. .
* ASunetion f: 2% 5% s o computoble funetion € some Turing machine IV, on every input W, halts with just f(w) on its
tope.
* language A is mopping reducible to language B, written A< B, € there is o computable Sunetion f1 3% 3%, where .
Cor every w, wOA- f(w)OB
* The notion of mapping redoetion is Sl\shﬁ-b &Cerent Grom the reduetion we hove been t\o‘ms before : .
ZQTM and EATM are not Turing recognizable
To prove that B is not Tur-‘ms'r-ccosn\muc we may show that Atm <m B.

recognizable.

KASmBond Als not Turing — recognizable, then B s not
Toring — recognizable.

K A< ;B then A <pyBuwith the very same Sonetion.

Frst we show that EQTM is not Turing recognizable “‘j means of o reduetion rom Arm to EQrm.

To show that EQTM s not Tur\vxs'retoavx\mblc we 'Prov\Ae o reduetion Grom ATM to the tom’[)lemcvﬂ- of

Chap b & Time Com?le)&ﬂj EQrw, namely EQrm.

MEASURING COMPLEXITY

* Zven when o problem is decidable and thus cmpu*l’od‘\ovwﬂj solvoble W principle, it may not be .

solvable proctice € the sclution requires on nordinate amount of time oF memory. I this
Cinal part of the book we ntroduee. computational complexit +\\corj — o investigation of the
time, memory, or other rescurces re.cp\re.& Sor solving computational problems.

For simplicity we compute the running time of an algorithm purely as o Cunetion of the length
of the string representing the nput and don’t consider any other porameters. n worst —
case analysis, the Sorm we consider here, we consider the longest Funning time of all inputs of
o porticvlar length.

Definition:

let M be o deterministic Turing mochine that halts on all inputs. The running time o time
com'Ple)C\fj o€ M is the Sunction [N - N, where f{n) is the moximum number of steps that
M uses on any nput of length n. K f(n) is the running time of M, we sy thot M runs W time
f(n) and that M is an f(n) time Turing machine.

Because the exoet runr\\v\s time of an alsor‘\ﬁ-hm often is o o_om'Plex eX’Pr—ass'\ov\, we usval

Jjust estimate is. n one convenient Sorm of estimation, coled as mptotic N\aljs"\s, we seeK to
onderstond the ronning time of the onor-H-hm when it is run on large nputs.

Deinition: (Big0 nototion)

o let € ond g be Yo Cunetions €,4: N - R+. Scx:) thot €(n) = O(g(n)) € positive ntegers ¢ ond
n0 eXist so thot Cor every nteger N 200 then §(n) < ¢ [(n)

o When €(n) = O(g(n)) we B thot g(n) is an upper bound Cor §(n), oF more 'Pf-tm‘\selj, thot g(n)
s on ASJM’P‘\'O‘HQ, upper bound Cor §(n), to emphasize that we are suppressing constant
Coctors.

COMPLEXITY RELATIONSHIPS AMONG MODELS

o let #(n) be & Cunetion, where t(n) = n. Then every t(n) time multitape Turing machine hos on equivalent O(t2 (n)) time

single — tape Toring machine.

Definition: Let N be o nondeterministic Toring machine thot s o decider. The ronning time of N is the Cunetion f: N —

Frequently we derive bounds of the orm N’ Gor ¢ greater than O. Sueh bounds are called
polynomial bounds. Bounds of the Gorm 207 are coled exponential bounds when 8is o
real number greater than O.

Big — 0 nototion has o companion caled small — o notation. Big — 0 notation guves o
wagy to say thot one Cunction is as m’P‘I’D‘Hc.oJJJ no more than ancther. To say thot
one Sunction s asbm'woﬁmaﬂj less thon ancther we use small — o notation. The
dCerence between the big — D ond small — o notation s analogous to the dCerence
between < ond <.

Definition: (Smale notation)

o let ¢ and g be two Cunetions f,g: N - R*. SAJ thot f(n) = o(g(n)) €

limn . o(fin) / g(n)) =0

o W other words, f(n) = 0(g(n)) means that, Cor ony real number X > 0, o number 1o
exists, where f(n) <c [g(n) or al n21np.

DeCinition: (Time LM’PI&XH—D class)

o let t: N - Nbe o Cunction. Define the time aom’PleX\‘?-J class, TIME(t(n)), to be
TIME(t(n)) = { L | L is a language decided by an O(t(n)) time Turing machine}

Avxj languoge that con be decided in o(n [og n) ¥ime on & single — tope Turing machine
is regular.

This diseussion highlights an important dCerence between c.om‘PIex'\‘I'\j theory and
LO'V\'PU"’O\Hj ‘Hv\cor-j. n tom?u‘f‘mb‘d\‘\—j *H\eerj, the Chureh — Turing thesis implies that oll
reasonable models ot computation are equivalent, that is, they ol decide the some class
of langvages. Lom'Plex\‘f-J ‘H\eor\j, the choice of the model offects the time tom’PlexH-\j
of langoages.

¢ let t(n) be o Cunction, where t(n) = n. Then every t(n) time
nondeterminstic single — tape Toring machine has an equivalent
200M) $ime determnistic single tope Toring machine.

N, where f(n) is the moximum number of steps that N uses on ong branch € its computation on ong nput of length

.

THE ClAss P
* Ixponential time algorithms +3]>‘\e_allj arise when we solve problems bj searching through & The class P 'PIAJS o central Fole n our *H\eorj and s important because

spoce of solutions, called brute — Coree search.
P is the class of languages that are decidoble n 'Poli;gnom‘\o\l time on o deterministic single —
tope Toring machine. W other wordst P = Uk TIME(n")

¢ P s warant Sor ol models of computation that are 'Polbnom‘wj‘j equivalent to the
determnistic singe — tape Turing machine.
. P rousklb e.or-kes'Pom\s to the class of problems that ore rtofo‘He.allb solvable on o

¢ Zvery context — Gree lomsuoﬁc s o member of P

¢ Pis dosed under union, concatenation and complement

Examples of problems n P : .

* PATH = {<G,s,t> | G dir. graph with dir. Path from s to t} s wn P .

A 'Poljwovv{uxl time algorithm Cor PATH s (T N witth nput <G,s,t> behaves as
L Plce o marK on node s
A ’Repao:r the stoge 3 until no odditional nodes ore marked .
2. Secon ol c.&sc.s of G K on :e\sc. (oyb) s Sound going from o morked nole a to an
unmarked node by, mark b
Y K s marked, aceept. Dtherwise, reject.

THE ClASs WP
* NP means NonDeterministic Polynomial
* Howmiton — Pathi HAMPATH = {<G,s,t> | G is a directed graph with a Hamiltonian path from s to t}
* The HAMPATH problem does hove a Geature caled 'Poljnom"v.\l verQobility,

* Some problems may not be 'Polbnom‘w\l veriCioble. Yor example, take HAMPATH , the
complement ot the HAMPATH problem. Even i€ we coull determine (somehow) that o groph &
not have o Homiltonian poth, we don’t know of & way or someone else to veri?b s non”
existence without using the some exponential time algorithm Gor moKing the determination n
the Grst ploce.

* A verSer Cor a language Als an algorithm V, where A= {w |V accepts <w,c> for some string c}

* We meoasure the time of o verSier ovle n terms of the length of wy so & 'Pol:)vxom‘ml time
verGier runs in polynomial time n the length of w.

* NP s the cass of loanguages that howve 'Poljnom‘ml time verQers.

Examples of problems n NP :

CLIQUE = { <G,k> | G is an undirected graph with a k — clique } / CLIQUE s n NP.

Ver§ier Sor CLIQUE : On nput <<Gk>,c>
\
A Test whether G contains all u\acs connecting nodes ¢
3. K both pass, aceept; otherwise reject

Test whether C is a set of noles n G CLIQUE : On nput <G,k> :

3

ISO = {<G, H>| G and H are isomoprhic graphs} is i NP. Proot Wea :
L CheeK the numbers of edges and vertices are the same
. Select o bijection of the e,e\se.s of both graphs v\on‘&eimn‘m‘\sﬁtaﬂj
Notes on NP ¢
P versus NP
* P T coss of languages for which membership con be decided quickl
¢ NP = dass of languages Sor which membership can be verGied guiekl
* We dont know € P = NP (one of the greotest unsolved ’Pro\ule_m). We howve not been able to
prove that o languoage n NP s not n P. We #hink however that P # NP
* Obvicusly P 0 NP since deterministic TMs are special cases of nondeterministic TMs
NP-COMPLETENESS
* SAT = { <®>| @ is a satisfiable Boolean formula } .
* CooK — levin theorem: SATOP < P=NP

OR we construet a nondeterminstic 'Pol:)nom‘uxl TN thot decides

Nondeterministically seleet o subset ¢ of k nodes o€ G
A test whether G contains al ct\sc.s connecting nodes ¢
2¢ 4= accept; otherwise reject.

computer.

RELPRIME = {<x,y>| x and y are relatively prime} is w P

CONNECTED = {<G> | G is a connected undirected graph} is wn P

Proct Wea ! Same demonstration as PATH but with on additional step locking for unmarked
nodes.

TRIANGLE (3-CLIQUE), 4-CLIQUE and 5-CLIQUE are in P. But Coution : k-CLIQUE (n
>8)is in NP Prock Wea Cor triangle © Select oll sUsets of 3 vertices and cheek €
'Hw:a are connected. Graphe of konn=>O(n!/ (n-k)! * k!) = O(n3)

¢ A verGer uses additional nformation, rc.'Pre.se.vvl’c.«\ by the sbmbol ¢, to ve.r-'\(::) thot o
String w is o member of A This nformation is coled o certificate, or prock, of
membership n A. Observe thot, Cor 'Pobv\ovv{uxl verQiers, the certCicate has 'Pol‘jnom"\o\l
length G the length of W) becowse that is all the verfier con access in its time bound.

* Alanguoge s n NP €€ it is decided b\j some nondeterministic 'Poljwom\o\l time Turing
mochine.

¢ NTIME(t(n)) = {L | L is decided by a O(t(n)) time nondeterministic Turing machine}

« NP=UNTIME®Y)

¢ Pis the doss of loanguages that ore decidoble 'Poljv\om'\o\l time on o nondeterministic
Toring mochine.

* The best methol known Sor solving problems ‘w\APJP &eﬁ-u—rv\‘\n'\sﬁe_zxﬂj uses exponentiol
time olgorithm : NP [EXPTIME = UkTIME(Zn k)

SUBSET-SUM = { <S,t>| S = {x1,...,xk } and for some

Y1yt O {X1,..Xk}, we have Jyi =t}

SUBSET-SUM is wn NP.

VerGer ¢or SUBSET-SUM: : On nput <<8,t>,c>

L Test whether ¢ is o colection of numbers that sum to

+

Test whether S contains ol numbers n ¢

I¢ both path, accept; otherwise reject.

pY
2.

3. Cheek whether ‘szj hove the some connections

NP and CoNP
* The closs NP contains the languages for which the complement is in NP
* HAMPATH, CLIQUE ond SUBSET-SUM are wnot chvicusly also wn NP. Ver-\ijs thot
something s not present seems to be more &Ceult than ve.r\@jms thot it is present.
* We believe that NP # esNP, but o_kw-lb P =P

CLIQUE ‘s NP — complete. Proct dea Kor the redvetion of 3SAT to CLIQUE
The nodes o€ G are orao\v{\u& n k groups of three noles each

* We have alreody defined the concept of rcAuc\ns one problem to ancther. caled triples. Each triple LOPPLS'POV\AS to one of the clowses n
When problem A reduces to problem B, o solution to B con be used to @, and each note n o triple e_orres'Pom\ to o literal W the
solve A. Now we define o version of reducibility that tokes the c@@\du\cj of clowse. Label each node of G with its corresponding fiteral in @
computation nto account. When problem A s eSCicient! reducidle to problem The u\ses of G connect all but X +3'Pcs of pawrs of noles : No
B, an efSicient solution to B can be used to solve A efficiently. c&se is present between nodes n the same triple and no e&se

* Definition’ A Conetion £ Z#* 5 5* s o polynomial time computable funetion € s present between A nodes with contradictory lobels, as w X2
some ‘Pobnom?al time Toring machine M eXists that holts with just (w) on and X2. The the clouse is satistoble € the groph hos o k-
its tope, when started on ony nput w. CLIQUE.

¢ Definition: Lzmsuxsc Alis 'Pol\jv\omial time mapping redocible, or simpl
'Poljwovv\‘uxl time reducible, to language B, written A<y B, € o polynomiol

* K Gis on undirected graphy o vertex cover of G \s o subset of the nodes where every e.e\se. of G touches
one of those nodes. The vertex cover problem asKs Gor the size of the smalest vertex cover.

¢ VERTEX-COVER = { <G,k> | G is an undirected graph that has a k — node vertex cover }

* VERTEX-COVER s NP — complete. Proct dea redvetion of 3SAT to VERTEX-COVER
L Each voriable X wn @ ’Prc&uu.s two nodes labeled x
and X. A Each clovse 'Pr-o&ue.es three noldes lobeled
as the [teral, which are all connected together. 3.
Zach nole x 'Pr-o&u:_e(\ n L is connected to all nodes
n G. 4. Each nole x 'Prcx\uc.c\\ W L s connected to ol
noles in G. There are 2m * 3l nodes n G (P has m
voriables and 1 clouses) We look €or o k=m + 21

verteX cover.

time computable Sunetion f: 2% - T* exists, where Cor every W, W Ae f
w)OB
The Cunction € is coled the 'denowal time redvetion of A to B. K A<y B
ond BOP, then ALP.
* 3SAT = { <®>| @ is a satisfiable 3-CNF-formula}
* 3SAT's ’denovv{uxl time reducidle to CLIQUE. Ths means, € CLIQUE s
solvable n 'denom\o\l time, so is 3SAT.
* DeSinition: A languoge B s NP - complete € it is satisCies two conditions?
LB s NP
A Every A in NP is polynomial time reducide to B.
e KB NP- c.om'Pld—e ond BO P y then P = NP. No one has been Sound so
Cour-.
e KB isNP- complete and B<(C Cor C in NP, then C is NP — complete.
SAT s NP — complete. (Cooklevin theorem)
* 3SAT s NP — complete.

¢ HAMPATH s NP — complete. HAMPATH <, HAMCIRRCUIT (new vertex added to the 3ro\'Ph)
¢ SUBSET-SUM s NP — complete. HAMCIRCUIT <p TSP (HAMCIRCUIT is o speci€ie cose of TP

	RESUME Theoretical Computer Science
	STRINGS AND LANGUAGES
	Chap 1 : Regular languages
	INTRODUCTION
	FINITE AUTOMATA
	THE REGULAR OPERATIONS	
	NONDETERMINISM
	NFA – NNONDETERMINISTIC FINITE AUTOMATA
	REGULAR EXPRESSIONS
	GENERALIZED NONDETERMINISTIC FINITE AUTOMATON
	NON-REGULAR LANGUAGES

	Chap 2 : Context-Free languages
	INTRODUCTION
	CONTEXT-FREE GRAMMARS
	DESIGNING CONTEXT-FREE GRAMMARS
	CHOMSKY NORMAL FORM
	PUSDOWN AUTOMATA (PDA)
	EQUIVALENCE WITH CONTEXT-FREE GRAMMARS	
	PUMPING LEMMA FOR CONTEXT-FREE LANGUAGES

	Chap 3 : The Church-Turing thesis
	TURING MACHINES
	CONFIGURATIONS OF TM
	EXAMPLES OF TURING MACHINES
	PROPERTIES OF TURING-X'ABLE LANGUAGES
	VARIANTS OF TURING MACHINES
	THE CHOMSKY HIERACHY of LANGUAGES
	THE DEFINITION OF AN ALGORITHM

	Chap 4 : Decidability
	DECIDABLE LANGUAGES
	The Halting problem
	Suppose H is a decided for ATM. On input <M,w> where M is a TM and w is a string, H halts and accepts if M accepts w. Machine D has H as subroutine. D calls H to determine what it does and does the contrary. Here D cannot the contrary as itself, hence we have a contradiction, Hence ATM is not decidable (See Diagonalization above)
	TURING DECIDABLE / TURING RECOGNIZABLE

	Chap 5 : Reducibility
	UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY
	Notes on ETM:
	MAPPING REDUCIBILITY

	Chap 6 : Time Complexity
	MEASURING COMPLEXITY
	COMPLEXITY RELATIONSHIPS AMONG MODELS
	THE CLASS P
	THE CLASS NP
	NP-COMPLETENESS

