
RESUME Theoretical Computer Science
STRINGS AND LANGUAGES   · The string of the length zero is called the empty string and is written as ε.   · A language is a set of strings.

Chap 1 : Regular languages
INTRODUCTION
An idealized computer is called a computational model  which allows us to set up a manageable mathematical theory of it directly. As with any model in science, a computational model may be“ ”  
accurate in some ways but perhaps not in others. The simplest model is called finite state machine  or finite automaton .“ ” “ ”
FIN ITE AUTOMATA

• Finite Automata are good models for computers with an extremely limited 
amount of memory, like for example an automatic door, elevator or digital 
watches.

• Finite automata and their probabilistic counterpart Markov chains  are useful“ ”  
tools when we are attempting to recognize patterns in data. These devices 
are used in speech processing and in optical character recognition. Markov 
chains have even been used to model and predict price changes in financial 
markets.

• The output of an finite automaton is accepted  if the automaton is now in“ ”  
an accept state (double circle) and reject if it is not.

• A finite automaton is a list of five objects:
o Set of states             o Start state             o Rules for moving.
o Input alphabet             o Accepts states

• A finite automaton has a transition for every possible letter from the alphabet 
going out every possible state and no e transition.

• δ (x,1) = y , means that a transition from x to y exists when the machine reads a 1.
• Definition: A finite automaton is a 5  tuple (– Q, Σ, δ, q0, F) where

   1. Q is a finite set called the states.
   2. Σ is a finite set called the alphabet (Epsilon).
   3. δ :Q × Σ → Q is the transition function (Sigma).
   4. q0 ∈Q is the start state
   5. F ⊆ Q is the set of accept states.

• If A is the set of all strings that machine M accepts, we say that A is the language of machine M 
and write L(M) = A. We say M recognizes A.

• A language is called a regular language  if some finite automaton recognizes it.“ ”
• A finite automaton has only a finite number of states, which means a finite memory.
• Fortunately, for many languages (although they are infinite) you don t need to remember the entire’  

input (which is not possible for a finite automaton). You only need to remember certain crucial info.

THE REGULAR OPERATIONS
We define 3 operations on languages, called the regular operations, and use them to study properties of the regular languages.
Definition: Let A and B be languages. We define the regular operations union, concatenation and star as follows:
    o Union: A∪ B = {x | x∈ A or x∈ B}
    o Concatenation: A ο B = {xy | x∈ A and y ∈ B}
    o Star: A* = { x1 x2… xk | k ≥ 0 and each xi ∈ A}
The class of regular languages is closed under the following operations : union, concatenation, intersection, star and 
complement.

Example: Let the alphabet Σ be the standard 26 letters {a, b, …, 
z}. If language A = {good, bad} and language B = {boy, girl}, then:
o A∪ B = {good, bad, boy, girl}
o A o B = {goodboy, goodgirl, badboy, badgirl}
o A* = {ε, good, bad, goodgood, goodbad, badgood, badbad, 
goodgoodgood, goodgoodbas, …}

NONDETERMINISM
• Nondeterminism is a generalization of determinism, so every deterministic finite 

automaton is automatically a nondeterministic finite automaton.
• In a DFA (deterministic finite automaton), every state always has exactly one 

exiting transition arrow for each symbol in the alphabet. In an NFA 
(nondeterministic finite automaton) a state may have zero, one or many exiting 
arrows for each alphabet symbol.

• Nondeterministic finite automata are useful in several respects. As we will show, 
every NFA can be converted into an equivalent DFA, and constructing NFAs is 
sometimes easier than directly constructing DFAs. An NFA may be much smaller 
than its deterministic counterpart, or its functioning may be easier to 
understand.

How does an NFA compute? Suppose that we are running an NFA on an input string and come to a state 
with multiple ways to proceed. Fro example, say that we are in state q1 in NFA N1 and that the next input 
symbol is a 1. After reading that symbol, the machine splits into multiple copies of itself and follows all the 
possibilities in parallel. Each copy of the machine takes one of the possible ways to proceed and continues 
as before. If there are subsequent choices, the machine splits again. If the next input symbol doesn t’  
appear on any of the arrows exiting the state occupied by a copy of the machine, that copy of the 
machine dies, along with the branch of the computation associated with it. Finally, if any one of these 
copies of the machine is in an accepts state ate the end of the input, the NFA accepts the input string. 
If a state with an ε symbol on an exiting arrow is encountered, something similar happens. Without reading 
any input, the machine splits into multiple copies, one following each of the exiting ε - labelled arrows and 
one staying at the current state. Then the machine proceeds nondeterministically as before.

NFA  NNONDETERMINISTIC FIN ITE AUTOMATA–

• Definition: A nondeterministic finite automaton is a 5  tuple – (Q, Σ, δ, q0, F), where
   1. Q is a finite set of states.
    2. Σ is a finite alphabet.
    3. δ : Q× Σε → P(Q) is the transition function, Σε = Σ∪{ε}
    4. q ∈Q0 is the start state.
    5. F ⊆ Q is the set of accept states.

• In a DFA the transition function takes a state and an input symbol and produces the next state. 
In a NFA the transition function takes a state and an input symbol or the empty string and 
produces the set of possible next states.

• For any set Q we write P(Q) to be the collection of all subsets of Q (Power ser of Q).

• Deterministic and nondeterministic finite automaton recognize the same class of 
languages.

• Two machines are equivalent if they recognize the same language.
• Every NFA has an equivalent DFA.
• If k is the number of states of the NFA, it has 2k subsets of states. Each subset 

corresponds to one of the possibilities that the DFA must remember, so the DFA 
simulating the NFA will have 2k states.

• Transforming NFA to DFA : The DFA M accepts (means it is in an accept state) if 
one of the possible states that the NFA N could be in at this point, is an accept 
state.

• A language is regular if and only if some NFA recognizes it.
Example for transforming an NFA into equivalent DFA :

1. Determine D 
states : 23 = 8 
states : {{∅}, 
{1}, {2}, {3}, 
{1,2}, {1,3}, 
{2,3},{1,2,3}} 

2. D start state is 
the set of 

states that are reachable from 1 by traveling 
along ε arrows plus the state 1 itself  = 
{1,3}

3. D start state is the set of 
states that are reachable 
from 1 by traveling along ε 
arrows plus the state 1 itself 
= {1,3}

4. D accept states are the 
states containing state 1, 
hence {1},{1,2},{1,3},1,2,3}

5. Then for each of the new 
state, arrows are added for each symbol of the alphabet depending on what was 
possible on the NFA.

6. Finally unnecessary states are removed

REGULAR EXPRESSIONS
• Definition: Say that R is a regular expression if R is:

1. a for some a in the alphabet Σ .
2. ε.
3. ∅, 1*∅ = ∅, ∅* = {ε}, R o ∅ = ∅
4. (R1∪ R2) , where R1 and R2 are regular expressions.
5. (R1o R2) , where R1 and R2 are regular expressions.
6. (R1*) , where R1 is a regular expression.

• The value of a regular expression is a language.
• Regular expressions have an important role in computer science applications. In applications involving 

text, user may want to search for strings that satisfy certain patterns . Regular expressions provide a 
powerful method for describing such patterns.

• A language is regular if and only if some regular expression describes it. (Equivalence with finite 
automaton)

• We can write Σ as shorthand for the regular expression (0 ∪ 1) . More 
generally, if Σ is any alphabet, the regular expression Σ describes the 
language consisting of all strings of length 1 over that alphabet, and Σ* 
describes the language consisting of all strings over that alphabet. Similarly 
Σ*1 is the language that contains all strings that end in a 1. The language 
(0Σ*) ∪ (Σ*1) consists of all strings that either start with a 0 or end with 
a 1.

• Precedence in regular expressions: * > o > ∪
• When we want to make clear a distinction between a regular expression R 

and the language that it describes, we write L(R) to be the language of R.
• Don't confuse between the ε regular expression  representing the language 

containing the empty string an d the ∅  representing the language that 
contains nothing.

• Example for converting a regular expression to an finite 
Automaton (NFA) :

• This example consists of converting the RE (a∪b)*aba
• See how the various elements are put in place step by step
• See how the proofs for the closing of Regular Languages under 

concatenation, union and star are used.

GENERAL IZED NONDETERMINISTIC FIN ITE AUTOMATON



• The Generalized Nondeterministic Finite Automaton is an important 
concept as it allows to transfrom a Finite Automaton to a Regular 
Expression. The Tranformation path is DFA  GNFA  RE.→ →

• Definition: A generalized nondeterministic finite automaton, (Q, Σ, δ, 
qstart, qaccept) is a 5  tuple where–
1. Q is the finite set of states.
2. Σ is the input alphabet.
3. δ : ( Q −{qaccept})× (Q −{qstart}) → R is the transition function.
4. qstart is the start state.
5. qaccept is the accept state.

• The GNFA reads blocks of symbols form the input, not necessarily just 
one symbol at a time as in an ordinary NFA.

• For convenience we require that GNFAs always have a special form that 
meets the following conditions:
o The start state has transition arrows going to every other state 
but no arrows coming in from any other state.
o There is only a single accept state, and it has arrows coming in from 
every other state but no arrows going to any other state. 
Furthermore, the accept state is not the same as the start state.
o Except for the start and accept states, one arrow goes from every 
state to every other state and also from each state to itself.

• We can easily convert a DFA into a GNFA in the special form. 
o We simply add a new start state with an ε arrow to the old start state and a new accept state with e 
arrows form the old accept states. 
o If any arrows have multiple labels (or if there are multiple arrows going between the same two states in 
the same direction), we replace each with a single arrow whose label is the union of the previous labels. 
o Finally, we add arrows labeled ∅ between states that had no arrows. This last step won t  change the’  
language recognized because a transition labeled with ∅ can never be used.

• We let M be the DFA for language A. The we convert M to a GNFA G by adding a new start state and a new 
accept state and additional transition arrows as necessary. We use the procedure CONVERT(G), which 
takes a GNFA and returns an equivalent regular expression.

CONVERT(G): Generates a regular expression R out of a 
GNFA G:

• Let k be the number of states of G (the GNFA)
• if k = 2, then G must consist of a start state, an 

accept state and a single arrow connecting them and 
labeled with a regular expression R. return R

• if k > 2, we select any state qrip ∈Q and different 
from the start and accept states and eliminate it from 
G.  We obtain G' where labels between each qi and qj 
other than the start and accept states are as follows 
(see here ->)

Example of DFA  GNFA  RE conversion, seeing every step :→ →

Step 0 : The initial DFA Step 1 : From DFA to GNFA : new start state 
and accept state with ε arrows.  

Step 2 : Getting rid of 
state 1 and replacing 
arrows as appropriate

Step 3 : Getting rid of the state 2 and replacing arrows as 
appropriate. 

Step 4 : last step : getting rid of state 
3 and replacing the last arrows. The 
resulting expression is the RE to be 
returned.

NON-REGULAR LANGUAGES
• To understand the power of finite automata you must also understand 

their limitations. In this section we show how to prove that certain 
languages cannot be recognized by any finite automaton.

• Let s take the language ’ B = {0
n
1

n
 | n ≥ 0}. If we attempt to find a DFA 

that recognizes B, we discover that the machine seems to need to 
remember how many 0s have been seen so far as it reads the input.

• Because the number of 0s isn t limited, the machine will have to keep’  
track of an unlimited number of possibilities. But it cannot do so with any 
finite number of states.

• Our technique for proving nonregularity stems from a theorem about 
regular languages, traditionally called the pumping lemma. This theorem 
states that all regular languages have a special property. If we can show 
that a language does not have this property, we are guaranteed that it is 
not regular. The property states that all strings in the language can be 
pumped  if they are at least as long as a certain special value, called the“ ”  

pumping length. That means each such string contains a section that can 
be repeated any number of times with the resulting string remaining in the 
language.

• Pumping Lemma: If A is a regular language, then there is a number p (the pumping length) where, if s is 
any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the 
following conditions:
    1. for each i ≥ 0 , xyi z ∈ A
    2. | y | > 0
    3. | xy | ≤ p
We note that y ≠  ε while x or z can be ε

• To use the pumping lemma to prove that a language B is not regular, first assume that B is regular in 
order to obtain a contradiction. The use the pumping lemma to guarantee the existence of a pumping 
length p such that all strings of length p or greater in B can be pumped. Next, find a string s in B that 
has length p or greater but that cannot be pumped. Finally, demonstrate that s cannot be pumped by 
considering all ways of dividing s into x, y and z (taking condition 3 of the pumping lemma into account if 
convenient) and, for each such division, finding a value i where xy

i
 z ∉ B . This final step often involves 

grouping the various ways of dividing s into several cases and analysing them individually. The existence of s 
contradicts the pumping lemma if B were regular. Hence B cannot be regular.

• Finding s sometimes takes a bit of creative thinking. You may need to hunt through several candidates for 
s before you discover one that works. Try members of B that seem to exhibit the essence  of B s“ ” ’  
nonregularity.

Example 1
• Let B={0

n
1

n
 | n ≥ 0}

• We suppose that B is regular
• Let p be the pumping length
• We choose s=0

p
1

p

• s=xyz also xy
i
z ∈ B. This is impossible because:

◦ If y consists only of 0s, then xyyz ∉B 
(more 0s than 1s)

◦ If y consists only of 1s, then xyyz ∉B
◦ If y consists of both 0s and 1s, then xyyz 

∉B (disorder of 0s and 1s in s)
• This B is not regular (contradiction)

Example 2
• C={w | w has an equal number of 0s and 1s}
• Suppose C is regular and p the pumping length
• Let s=0

p
1

p then s=xyz and also xy
i
z ∈C

• If we take y=0
p
1

p and x and z be empty then 
xy

i
z ∈ C !

• BUT the condition 3 (|xy| ≤ p) is not 
respected

• Thus y must consist only of 0s (or only of 1s).
• BUT xyyz ∉C in this case
• Thus C is not regular

Example 3
• D = {a2^n

 | n ≥ 0}
• let's assume that D is regular
• Let s be string a2p then s=xyz
• Third condition tell that |xy| ≤ p. 

Furthermore p < 2
p and so |y| < 2

p

• Therefore |xyyz| = |xyz| + |y| < 2
p
 + 2

p
 = 2

p+1

• The second condition requires |y| > 1 so 2p 

< |xyyz| <2
p+1

• The length of xyyz cannot be a power of 2. 
Hence xyyz is not a member of D.

• Thus D is not regular

Example 4
• E is described by the RE 0*1*
• The minimum pumping length is 1
• The pumping length cannot be 0 

because ε is in the language
• Every non-empty string in the 

language can be divided into xyz 
wjere x = ε and y is the first 
character and z is the 
remainder.

• Hence is regular

Chap 2 : Context-Free languages
INTRODUCTION
In this chapter we introduce context  free grammars, a more powerful method, than finite automata – and regular expressions, of describing languages. Such grammars can describe certain 
features that have a recursive structure which makes them useful in a variety of applications (study of human languages, compilation of prog. Languages).
CONTEXT-FREE GRAMMARS

• A grammar consists of a collection of substitution rules, also called productions. Each rule appears 
as a line in the grammar and comprises a symbol and a string, separated by an arrow. The symbol 
is called a variable. The string consists of variables and other symbols called terminals.

• You use a grammar to describe a language by generating each string of that language in the 
following manner.
1. Write down the start variable . It is the variable on the left  hand side of the top rule, unless–  
specified otherwise.
2. Find a variable that is written down and a rule that starts with that variable. Replace the 
written down variable with the right  hand side of that rule.–
3. Repeat step 2 until no variables remain.

• All strings generated in this way constitute the language of the grammar. We write L(G) for the 
language of grammar G.

• Definition: A context  free grammar is a 4  tuple – – (V,S, R, S) , where
1.  V is a finite set called the variables.
2. Σ is a finite set, disjoint from V, called terminals.
3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals.
4. S ∈V is the start variable.

• We write u ⇒ v if u = v or if a sequence u1,u2,...,uk exists for k ≥ 0 and
u ⇒ u1 ⇒ u2 ⇒... ⇒ uk  ⇒ v

• Any language that can be generated by some context  free grammar is called a–  
context  free language (CFL).–

• The class of context-free languages is closed under union, concatenation and star.
• The class of context-free languages is NOT closes under intersection and 

concatenation
Example

• G=(V,E,R,S)
• Σ={that,this,a,the..man,book,flight,meal,include,

read,does}
• V={S,NP,NOM,VP,Det,Noun,Verb,Aux}
• S=S

R={S → NP VP | Aux NP VP | VP
      NP → Det NOM
      NOM → Noun | Noun NOM
      VP → Verb | Verb NP
      Det → that | this | a | the
      Noun → book | flight | meal | man
      Verb → book | include | read
      Aux → does

S → NP VP
→ Det NOM VP
→ The NOM VP
→ The man VP
→ The man Verb VP
→ The man read VP
→ The man read Det NOM
→ The man read this NOM
→ The man read this Noun
→ The man read this book



The language of the grammar is {w ∈Σ* | S ⇒ w}

DESIGNING CONTEXT-FREE GRAMMARS
}

You can convert any DFA into an equivalent CFG as follows. Make a variable 
Ri for each state qi of the DFA. Add the rule Ri → aRj to the CFG if δ (qi , 
a) = qj is a transition in the DFA. Add the rule Ri→ε if qi is an accept state 
of the DFA. Make R0 the start variable of the grammar, where q0 is the 
start state of the machine. Verify on your own that the resulting CFG 
generates the same language that the DFA recognizes.

• If a grammar generates the same string in several different ways, we say that the string is derived 
ambiguously in that grammar. If a grammar generates some string ambiguously we say that the grammar is 
ambiguous.

• A derivation of a string w in a grammar G is leftmost derivation of at every step the leftmost remaining 
variable is the one replaced.

• A string w is derived ambiguously in context  free grammar G if it has two or more different leftmost–  
derivations. Grammar G is ambiguous if it generates some string ambiguously.

CHOMSKY NORMAL FORM
• A context  free grammar is in Chomsky normal form, if–  

every rule is of the form
o A→ BC
o A→ a

• where a is any terminal and A, B and C are any variables – 
except that B and C may not be the start variable. In 
addition we permit the rule S →ε , where S is start variable.

• Any context  free language is generated by a context  free– –  
grammar in Chomsky normal form.

Example :

1. We add a new start variable S0 and the rule S0  → S (guarantees that the start variable occurs only on the left-hand 
side)

2. We remove all ε rules (in the form A  → ε where A ≠ S). If we find a rule in the form of R  → uAv then for each 
occurrence of A we add a new rule R  → uv (note that u and v are strings of variable terminals)

• If we have R → uAvAw then we add R  → uvAw, R  → uAvw and R  → uvw
• If we have the rule R  → A, we add R  → ε unless it has already be removed

3. We remove all unit rules in the form A  → B and for each rule B  → u we add the rule A  → u unless this is a unit rule 
previously removed

4. We convert remaining rules A  → u1u2...uk where k >= 3 and ui is a variable or terminal symbol to the rules A  → u1A1, A1 

 → u2A2, A2  → u3A3... and Ak-2  → uk-1uk. If k =2 we replace in these rules and terminal ui with a new variable Ui and 
the new rule Ui  → ui.

S → ASA | aB
A→ B | S
B→ b | ε

Add new start S0
S0 → S
S → ASA | aB
A→ B | S
B→ b | ε

Remove ε rules (1)
S0 → S
S → ASA | aB | a
A→ B | S | ε
B→ b | ε

Remove ε rules (2)
S0 → S
S → ASA | aB | a| 
      SA | AS |S
A→ B | S | ε
B→ b

Remove unit rules(1)
S0 → S
S → ASA | aB | a|
       SA |AS | S
A→ B | S
B→ b

Remove unit rules (2)
S0 → S | ASA | aB |a|
       SA |AS
S → ASA | aB | a |
       SA |AS
A→ B | S
B→ b

Remove unit rules(3)
S0 → ASA | aB | a|
       SA |AS
S → ASA | aB | a |
       SA |AS
A→ B | S | b
B→ b

Remove unit rules (4)
S0 → ASA | aB | a|
       SA |AS
S → ASA | aB | a |
       SA |AS
A→ S | b | ASA| aB |
      a | SA |AS
B→ b

Proper form
S0→ AA1 | UB | a | SA | AS
S → AA1 | UB | a | SA | AS
A → S | b| AA1| UB | a| SA 
      | AS
A1→ SA
U → a
B→ b

PUSDOWN AUTOMATA (PDA)
• These automata are like NFA but have an extra component called a stack. The stack 

provides additional memory beyond the finite amount available in the control. The stack 
allows pushdown automata to recognize some Nonregular languages.

• Pushdown automata are equivalent in power to context  free grammars.–
• A stack is valuable because it can hold an unlimited amount of information.
• The current state, the next input symbol read and the top symbol of the stack 

determine the next move of a pushdown automaton.
• Definition: A pushdown automaton is a 6  tuple – (Q, Σ, Γ, δ, q0, F), where Q,Σ,Γ and F 

are all finite sets, and:

Exampl,es :

1. Q is the set of states.
2. Σ is the input alphabet.
3. Γ is the stack alphabet.
4. δ : Qε × Σε × Γε → P (Q× Γε) is the transition function.
5. q0 ∈Q is the start state.
6. F ⊆ Q is the set of accept states.
We write a,b →c to signify that when the machine is reading an a from the input it may replace the 
symbol b on the top of the stack with a c. Any of a, b and c may be ε. If a is ε, the machine may 
make this transition without reading any symbol form the input. If b is ε, the machine may make this 
transition without reading and popping any symbol from the stack. If c is ε, the machine does not 
write any symbol on the stack when going along this transition.

PDA M1 that recognizes 
{0n1n | n  ≥ 0} 

PDA M2 that 
recognizes 
{a

i
b

j
c

k
 | i,j,k ≥ 0 

and i=j or i=k}

See the 
nondeterminism here

PDA M3 that recognizes
{wwR | w ∈{0,1}* } and wR means w written backwards

EQUIVALENCE WITH CONTEXT-FREE GRAMMARS
• A language is context free if and only if some pushdown automaton recognizes it. • Every regular language is context  free.–

Converting a CFG to a PDA, method :
1. Place the marker symbol $ and the start variable on the 

stack
2. Repeat the following steps for ever :

1. If the top of the stack is a variable symbol A, non-
deterministically select one of the rules for A and 
substitute A by the string on the right-hand side.

2. If the top of the stack is a terminal symbol a, read 
the next symbol from the input and compare it to a. 
If they match, repeat (consume it from the input and 
the stack). If they do not match, reject this branch of 
the non-determinism.

3. If the top of the stack is the symbol $, enter the 
accept state. Doing so accepts the input IFF it has 
all been read

The method above assumes the following 
shortcut :

Example for the CFG : S → aTb | b
T → Ta | ε

Converting a PDA to a CFG, method :
• First we simplify our task by modifying P slightly in order to give the following three features

1. It has a single accept state, qaccept

2. It empties its stack before accepting
3. Each transition either pushes a symbol onto the stack or pops one off the stack, but does not both 
at the same time

• To give it feature 3, we replace each transition that simultaneously pops and pushes with a two 
transition sequence that goes through a new state, and replace each transition that neither pops nor 
pushes with a two transition sequence that pushes then pops an arbitrary stack symbol

• Say that P= (Q, Σ, Γ, δ, q0, {qaccept}) and construct G. The variables 
of G are {Apq| p,q ∈Q}. The start variable is Aq0,qaccept. Now we 
describe G s rules’

• For each p, q, r, s ∈ Q, t ∈ Γ, and a, b ∈ Σε , if δ(p, a, ε) contains (r, 
t) and δ(s, b, t) contains (q, ε), put the rule Apq→aArsb in G

• For each p, q, r ∈ Q, put the rule Apq→ AprArq in G
• Finally for each p ∈ Q, put the rule App → ε in G

PUMPING LEMMA FOR CONTEXT-FREE LANGUAGES
If A is a context  free language, then there is a number p (the pumping length) where, if s is–  
any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying 
the conditions:

1. For each i ≥ 0, uv
i
xy

i
 z ∈ A

2. | vy | > 0
3. | vxy | ≤ p                                        We note that either v ≠  ε or y ≠  ε

Let B={anbncn | n≥ 0}
• We suppose that B is a CFL let s try to find a contradiction’
• B is a CFL then there is a p (the pumping length) where the selected string s=apbpcp is in B. The pumping 

Lemma stated that s can be pumped, but we show that it cannot.
• B= uvxyz. Condition 2 states that either v or y are non empty. Then we consider one of the two cases:
◦ When both v or y contain only one type of alphabet symbol; v (the same for y) does not contain both a s’  

and b s ’ or both b s ’ and c s ’ thus uv2xy2z cannot contain equal number of a s’ , b s ’ and c s’
◦ When either v or y contain more than one type of symbol, uv2xy2z may contain equal numbers of symbols 

Let C={ww | w∈{0,1}*}
• We suppose that C is a CFL. Let p be the pumping length given by the 

pumping lemma. We show that the string x=0p1p0p1p cannot be pumped. 
The string s can be divided into s=uvxyz.

◦ vxy can neither be at the beginning of the string s or at the end 
because s is symmetric and hence uv2xy2z cannot be pumped.

◦ vxy straddles in the midpoint of s: 0p1p‐1100p‐11p in this case, 
uv2xy2z is not in C.



but not in the correct order. Hence it cannot be a member of B. Contradiction • We get a contradiction with the pumping Lemma, thus C is not a CFL
Chap 3 : The Church-Turing thesis

TURING MACHINES
• Similar to a finite automaton but with an unlimited and unrestricted memory, a Turing machine 

is a much more accurate model of a general purpose computer. A Turing machine can do 
everything that a real computer can do. Nonetheless, even a Turing machine cannot solve 
certain problems. In a very real sense, these problems are beyond the theoretical limits of 
computation.

• The following list summarizes the differences between finite automata and Turning machines:
1. A Turing machine can both write on the tape and read from it.
2. The read  write head can move both to the left and to the right.–
3. The tape is infinite.
4. The special states for rejecting and accepting take immediate effect.

• In actuality we almost never give formal descriptions of Turing machines because they tend to 
be very big.

• Definition: A Turing machine is a 7  tuple – (Q, Σ, Γ, d, q0, qaccept, qreject), where Q,Σ,Γ are all 
finite sets and:
1. Q is the set of states.
2. Σ is the input alphabet not containing the special blank symbol _
3. Γ is the tape alphabet, where _∈Γ and Σ ⊆ Γ
4. d :Q× Γ → Q× Γ ×{L, R} is the transition function
5. q0 ∈Q is the start state
6. qaccept ∈ Q is the accept state
7. qreject ∈ Q is the reject state, where qreject ≠ qaccept

• For a Turing machine, d takes the form: d :Q × Γ → Q × Γ ×{L, R}. That is, when the 
machine is in a certain state q1 and the head is over a tape square containing the 
symbol a, and if d (q1, a) = (q2, b, L), the machine writes the symbol b replacing the a, 
and goes to state q2 

• For a Turing machine, δ takes the form: δ :Q× Γ →Q× Γ×{L, R}. That is, when the 
machine is in a certain state q1 and the head is over a tape square containing a 
symbol a, and if δ (q1, a) = (q2, b, L), the machine writes the symbol b replacing the a, 
and goes to state q2 

• The collection of strings that M accepts is the language of M, denoted L(M).
• Call a language Turing  recognizable if some Turing machine recognizes it.–
• When we start a TM on an input, three outcomes are possible. The machine may 

accept, reject, or loop. By loop we mean that the machine simply does not halt. It is 
not necessarily repeating the same steps in the same way forever as the 
connotation of looping may suggest. Looping may entail any simple or complex 
behaviour that never leads to a halting state.

• We prefer Turing machines that halt on all inputs; such machines never loop. These 
machines are called deciders because they always make a decision to accept or reject. 
A decider that recognizes some language also is said to decide that language.

• Call a language Turing  decidable or simply decidable if some Turing machine decides it.–
• Every decidable language is Turing  recognizable but certain Turing  recognizable– –  

languages are not decidable.
CONFIGURATIONS OF TM

• Initially M receives its input w = w1 w2 … wn ∈Σ∗ on the leftmost n squares of the tape, 
and the rest of the tape is blank.

• As a Turing machine computes, changes occur in the current state, the current tape 
contents, and the current head location. A setting of these three items is called a 
configuration of the Turing machine.

• A Turing machine M accepts input w if a sequence of configurations C1 ,C2 ,...,Ck exists 
where
1. C1 is the start configuration of M on input w
2. Each Ci yields Ci+1
3. Ck is an accepting configuration.

• A configuration is represented as uqv where  u and v in Γ* and q in Q
◦ The current state is q
◦ The current tape content is uv
◦ The current head of the tape is the first symbol of v

• Suppose that a, b, and c in Γ, and u and v in Γ*.
◦ uaqibv yields uqjacv if δ(qi , b)=(qj, c, L)
◦ uaqibv yields uacqjv if δ(qi , b)=(qj, c, R)
◦ qibv yields qjcv if δ(qi , b)=(qj, c, L) (head on the left hand end)
◦ qibv yields cqjv if δ(q1 , b)=(q2, c, R) (head on the left hand end)
◦ uaqi is equivalent to uaqi Ñ if the head is on the right hand end

Configuration of abAaaBAbqabbbBA :

Properties of configurations :
• The start configuration is q0w
• In accepting configuration the state is qaccept

• In rejecting configuration the state is qreject

• Accepting and rejecting configurations are halting configurations

• A Turing machine M accepts input w if a sequence of configurations C1, C2, …, Ck exists 
where

◦ C1 is the start configuration of M on input w
◦ Each Ci yields Ci+1, and
◦ Ck is an accepting configuration

EXAMPLES OF TURING MACHINES
M2 decides A = {02^n | n ≥ 0}
M2 = On input string w:“

1. Sweep left to right across the tape, crossing off 
every other 0

2. If in stage 1, the tape contained a single 0, accept.
3. If in stage 1, the tape contained more than a single 

0 and the number of 0s was odd, reject.
4. Return the head to the left-hand end of the tape.
5. Go to stage 1.”

M3 decides C = {aibjck | i * j = k and i,j,k ≥ 1}
M3 = On input string w:”

1. Scan the input from left to right to determine 
whether it is a member of a+b+c+ and reject if it is 
not.

2. Return the head to the left-hand end of the tape.
3. Cross off an a and scan to the right until a b 

occurs. Shuttle between the b's and c's, crossing off 
one of each until all b's are gone. If all c's have been 
crossed off and some b's remain, reject.

4. Restore all the crossed off b's and repeat stage 3 
if there is another a to cross off. If all a's have been 
crossed of, determine whether all c's also have been 
crossed off. If yes, accept; otherwise reject.

PROPERTIES OF TURING-X 'ABLE LANGUAGES

Machine M2 State diagram

Machine M2 configuration example for input 0000

Machine M1 State diagram :

M1 decides B = {w#w | w∈{0,1}*}
M1 = On input string w:“

1. Zig-Zag across the tape to corresponding positions on either 
side of the # symbol to check whether these positions contain 
the same symbol. If they do not, or if no # is found, reject.  
Cross off symbols as they are checked to keep track of which 
symbols correspond.

2. When all symbols to the left of the # have been crossed off, 
check for any remaining symbols to the right of the #. If any 
symbols remain, reject; otherwise, accept.”

The collection of Turing-decidable languages is closed under union, concatenation, start, 
complementation and intersection

The collection of Turing-recognizable languages is closed under union, concatenation, start and 
intersection (NOT complementation)

VARIANTS OF TURING MACHINES
• The original TM model and its reasonable variants all have the same power  they–  

recognize the same class of languages.
• To show that two models are equivalent we simply need to show that we can simulate 

one by the other.
• A multitape TM is like an ordinary Turing machine with several tapes. Each tape has its 

own head for reading and writing. Initially the input appears on tape 1, and the others 
start out blank.

• Two machines are equivalent if they recognize the same language.
• Every multitape Turing machine has an equivalent single tape Turing machine.
• A language is Turing  recognizable if and only if some multitape Turing machine–  

recognizes it.
• A nondeterministic Turing machine is defined in the expected way. At any point in a 

computation the machine may proceed according to several possibilities. The transition 

• The computation of a nondeterministic Turing machine is a tree whose branches correspond 
to different possibilities for the machine. (If you want to simulate a nondeterministic TM 
with a normal  TM you have to perform a breadth  first search through the tree,“ ” –  
because with depth  first you can lose yourself in a infinite branch of the tree and miss–  
the accept state). If some branch of the computation leads to the accept state, the 
machine accepts its input.

• Every nondeterministic Turing machine has an equivalent deterministic Turing machine.
• A language is Turing  recognizable if and only if some nondeterministic Turing machine–  

recognizes it.
• We call a nondeterministic Turing machine a decider if all branches halt on all inputs.
• A language is decidable if and only if some nondeterministic TM decides it.
• Loosely defined, an enumerator is a Turing machine with an attached printer.
• A language is Turing  recognizable if and only if some enumerator enumerates it.–



function for a nondeterministic Turing machine has the form: d :Q× Γ → P(Q× Γ ×{L, R})
THE CHOMSKY HIERACHY of LANGUAGES
Grammar Languages Autoamaton Productions Grammar Languages Autoamaton Productions
Type-0 Turing -recognizable

(Recursively enumerable)
Turing machine α → β 

(no restrictions)
Type-2 Context-free (Non-deterministic)

Pushdown automaton
A → γ

Type-1 Context-sensitive (LBA) Linear-Bounded non 
deterministic Turing machine 

ΑAβ → αγβ Type-4 Regular Finite State Automaton A → a
A → aB

THE DEFIN ITION OF AN ALGORITHM
• Informally , an algorithm is a collection of simple instructions for carrying out some task.
• Alonzo Church used a notational system called the λ - calculus to define algorithms. Turing 

did it with his machines . These two definitions were shown to be equivalent. This“ ”  
connection between the informal notion of algorithm and the precise definition has come 
to be called the Church  Turing thesis–

• The Church Turing thesis: Intuitive notion of algorithm is equal to Turing machine algorithms.–
• Our notation for the encoding of an object O into its representation as a string is <O>. If 

we have several objects O1,O2,...,Ok we denote their encoding into a single string by <O1,O2 

,...,Ok> .
• An algorithm always stops.

Chap 4 : Decidabi l ity
DECIDABLE LANGUAGES
Acceptance prob lem expressed as languages for regular expressions:
ADFA = {<B,w>| B is a DFA that accepts input string w}
ADFA is a decidable language.

TM M decides ADFA. The input of M is a pair <B,w> where 
B is a DFA and w is a string.

1. M simulates the DFA B on the input w.
2. If the simulation ends in an accept state, accept; 

otherwise, reject.

ANFA = {<B,w> | B is an NFA that accepts input string w}
ANFA is a decidable language.

TM N decides ANFA and behaves as follows on an input <B,w> 
where B is a DFA and w is a string.

1. N converts the NFA B into equivalent DFA C
2. N runs the TM M built for ADFA

AREX = {<R,w> | R is a regular expression that generates string w}
AREX is a decidable language.

TM P decides AREX and behaves as follows on an input <R,w> where 
R is a regular expression and w is a string.

1. N converts the reg exp R into equivalent  NFA B
2. N runs the TM M built for ANFA

The problem of testing whether a DFA B accepts an input w is the same as the problem of testing whether <B,w> is a member of the language DFA A . Similarly, we can formulate other 
computational problems in term of testing membership in a language. Showing that the language is decidable is the same as showing that the computational problem is decidable.
Emptiness testing for regular expressions:
EDFA = {<A> | A is a DFA and L(A) = ∅ }
This means, that no string exists that DFA A accepts.
EDFA is a decidable language.

TM T decides EDFA. The input of T is a singleton <A> where A 
is a DFA .

1. Mark recursively each next state, starting from the start 
state

2. If the finish state is NOT marked, accept; otherwise, 
reject.

The next theorem states that testing whether two DFAs 
recognize the same language is decidable:
EQDFA = {<A, B> | A and B are DFAs and L(A) = L(B) }
EQDFA  is a decidable language.

TM Q decides EQDFA and behaves as follows on an input <A,B> 
where both A and B are DFA's:

1. 1 construct a DFA C with language L(C) defined as:
L(C) = (L(A) ∩ L(B) ) ∪ (L(A) ∩ L(B))

2. N runs the TM M built for EDFA

Acceptance prob lem expressed as languages for 
context  free languages:–
ACFG = {< G,w > | G is a CFG that generates string w }
ACFG is a decidable language.

TM S for ACFG behaves as follows for an input <G,w> where G 
is a CFG and w is a string:

1. Convert G in an equivalent grammar in Chomsky normal 
form.

2. List all derivations with 2m – 1 steps, where n is the length 
of w, except if n = 0, then instead list all derivations with 1 
step

3. If any of them generates w, accept; if not, reject;
Language inclusion testing for regular language
INCDFA = {<A,B> | A and B are DFAs and L(B) ⊆ L(A)} / INCDFA is decidable
Idea : Show that L(B) ∩ L(A) = L(B)
Build DFA C that accepts L(C) and use machine built for EQDFA

Universal language for regular language
ALLDFA = {<A> | A is a DFA and L(A) = Σ∗} / ALLDFA is a decidable language
Idea : Consider ALLDFA = {<A> | A is a DFA and L(A) = ∅} that can be decided using EDFA

Then the complement of a decidable language is decidable.
Emptiness testing for context  free–  
grammars:
ECFG = {<G> | G is a CFG and L(G) = ∅ }
ECFG is a decidable language.
TM R decides ECFG. On input <G> where G is 
a CFG, G does :

1. Mark all terminal symbols on G
2. Repeat step 3 until no new variable get 

marked :
3. Mark any variable A where G has a rule 

A → U1U2...Uk and each symbol 
U1U2...Uk has already been marked.

4. If the start variable is not marked, 
accept; otherwise reject.

Equiva lence testing for 
context  free grammars:–
EQCFG = {< G,H > | G and H are 
CFLs and L(G) = L(H) }
EQCFG is NOT decidable !! 
Proving EQCFG the way we 
proved EQDFA is not feasible 
because Context-Free languages 
are NOT closed under 
intersection and 
complementation.
We will see later the technique 
used to prove that EQCFG is not 
decidable.

The Halting prob lem
ATM = {< M,w > | M is a TM and M accepts w }
Diagonalization :
   <M1> <M2> <M3> ... <D>
M1  A    R    R   ...  R
M2  R    R    A   ...  A
M2  A    A    R   ...  A
D   R    A    A   ...  ?
ATM is undecidable but it is Turing recognizable–  
hence ATM is sometimes called the halting problem.

Suppose H is a decided for ATM. On input <M,w> where M is a TM and w is a string, H halts and accepts if M 
accepts w. Machine D has H as subroutine. D calls H to determine what it does and does the contrary. Here D 
cannot the contrary as itself, hence we have a contradiction, Hence ATM is not decidable (See Diagonalization 
above)

TURING DECIDABLE / TURING RECOGNIZABLE
• Cantor observed that two finite sets have the same size if the elements of one set can be paired with 

the elements of the other set.
• Assume A and B are two (infinite) sets. If then exists a bijektive function f between the two sets, they 

have the same size.
• A set B is countable if either it is finite or it has the same size as the natural numbers N.
• Q (rational numbers) and N have the same size.
• R (real numbers) is uncountable.
• It shows that some languages are not decidable or even Turing  recognizable, for the reason that there–  

are uncountable many languages yet only countably many Turing machines. Because each Turing machine 
can recognize a single language and there are more languages than Turing machines, some languages are 
not recognizable by any Turing machine.

• Some languages are not Turing  recognizable.–
• The following theorem shows that, if both a language and its complement 

are Truing  recognizable, the language is decidable. Hence, for any–  
undecidable language, either it or its complement is not Truing – 
recognizable. We say that a language is co  Turing  recognizable if it is– –  
the complement of a Turing  recognizable language.–

• A language is decidable ⇔ it is both Turing  recognizable and co  Turing – – – 
recognizable.

• A language is decidable ⇔ its complement is decidable.
• ATM is not Turing  recognizable.–

Chap 5 : Reducibi l ity
UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY



• In this chapter we examine several additional unsolvable problems. In doing so we 
introduce the primary method for proving that problems are computationally 
unsolvable. It is called reducibility.

• A reduction is a way of converting one problem into another problem I such a way 
that a solution to the second problem can be used to solve the first problem.

• When A is reducible to B, solving A cannot be harder than solving B because a solution to B gives a 
solution to A. In terms of computability theory, if A is reducible to B and B is decidable, A also is 
decidable. Equivalently, if A is undecidable and reducible to B, B is undecidable. This last version is key 
to proving that various problems are undecidable.

• Rice s theorem:’  Testing any property of the languages recognized by a TM is undecidable.
HALTTM = {<M,w> | M is a TM and M halts on input w}

HALTTM is undecidable

We operate a reduction from ATM to HALTTM. We build a TM S deciding  ATM as 
follows, on input <M,w> where M is a TM and w a string :

1. Run TM R on input <M,w>
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts
4. If M has accepted, accept; otherwise, reject.

ETM = {<M> | M is a TM and L(M) = ∅}
ETM is undecidable.
We need as special machine M1 

which on input x,  behaves as 
follows.
1. If x ≠ w, reject.
2. If x = w, run M on input w 
and accept if M does.
Assuming that a TM R decides 
ETM, we construct TM S that 
decides ATM. On input <M,w>, 
S behaves as follows.
1. Use the description of M and 
w to construct M1.
2. Run R on input <M1>.
3. If R accepts, reject; if R 
reject, accept
According the above construction, we observe that S decides ATM, which is a contradiction. Hence, ETM is 
undecidable.

EQTM { <M1 ,M2> | M1 and M2 are 
TMs and L(M1) = L(M2)}
EQTM is undecidable.
We assume that TM R decides 
EQTM and we construct TM M1 

that rejects all inputs (i.e. it 
accepts the empty language ∅). 
We construct a decider S that 
runs R on <M,M1> where M is 
the input of ETM. If R accepts, 
accept; otherwise, rejects.
=> Contrad =>Thus EQTM not 
decidable

HALTALLWAYS = {<M> | M is a TM 
that halts on any input}
M1 builder build M1, M1 on input X
- if x ≠ w, reject
- if x = w, run M on w and accept 
if M accepts w (if M loops or 
rejects, undefined)
Hence
- if M accepts w => M1 always 
halts
- If M does not accept w => M1 

does not always halt 

Notes on ETM:
ETM = {<M> | M is a TM and L(M) = ∅}
ETM = {<M> | M is a TM and L(M) ≠ ∅}

ETM   is Turing-recognizable (idea : we build an enumerator for Σ* and we give all the words it builds to M. We stop when a word is 
finally aceepted)
Hence ETM is not turing-recognizable, see proof below :

MAPPING REDUCIBIL ITY
• Roughly speaking, being able to reduce problem A to problem by using a mapping reducibility means that a computable 

function exists that converts instances of problem A to instances of problem B. If we have such a conversion 
function, called a reduction, we can solve A with a solver for B.

• A function f : Σ*→Σ* is a computable function if some Turing machine M, on every input w, halts with just f(w) on its 
tape.

• Language A is mapping reducible to language B, written A ≤ m B, if there is a computable function f : Σ*→Σ* , where 
for every w, w∈ A⇔ f (w)∈ B

• The notion of mapping reduction is slightly different from the reduction we have been doing before :

• The function f is called the reduction of A to B.
• If A ≤ m B and B is decidable, then A is decidable.
• If A ≤ m B and A is undecidable, then B is undecidable.
• If A ≤ m B and B is Turing  recognizable, then A is Turing – – 

recognizable.
• If A ≤ m B and A is not Turing  recognizable, then B is not–  

Turing  recognizable.–
• If A ≤ m B then A ≤ m B with the very same function.

EQTM and EQTM are not Turing-recognizable
To prove that B is not Turing-recognizable we may show that ATM ≤m B.

Chap 6 : Time Complexity

First we show that EQTM is not Turing-recognizable by means of a reduction from ATM to EQTM.
To show that EQTM is not Turing-recognizable we provide a reduction from ATM to the complement of 
EQTM, namely EQTM.

MEASURING COMPLEXITY
• Even when a problem is decidable and thus computationally solvable in principle, it may not be 

solvable in practice if the solution requires an inordinate amount of time or memory. In this 
final part of the book we introduce computational complexity theory  an investigation of the–  
time, memory, or other resources required for solving computational problems.

• For simplicity we compute the running time of an algorithm purely as a function of the length 
of the string representing the input and don t consider any other parameters. In worst ’ – 
case analysis, the form we consider here, we consider the longest running time of all inputs of 
a particular length.

• Definition:
Let M be a deterministic Turing machine that halts on all inputs. The running time or time 
complexity of M is the function f : N → N , where f(n) is the maximum number of steps that 
M uses on any input of length n. If f(n) is the running time of M, we say that M runs in time 
f(n) and that M is an f(n) time Turing machine.

• Because the exact running time of an algorithm often is a complex expression, we usually 
just estimate is. In one convenient form of estimation, called asymptotic analysis, we seek to 
understand the running time of the algorithm when it is run on large inputs.

• Definition: (Big-O notation)
o Let f and g be to functions f, g : N → R+ . Say that f(n) = O(g(n)) if positive integers c and 
n0 exist so that for every integer n ≥ n0  then f(n) ≤ c ⋅ g(n)
o When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), or more precisely, that g(n) 
is an asymptotic upper bound for f(n), to emphasize that we are suppressing constant 
factors.

• Frequently we derive bounds of the form nc
 for c greater than 0. Such bounds are called 

polynomial bounds. Bounds of the form 2(nδ) are called exponential bounds when δ is a 
real number greater than 0.

• Big  O notation has a companion called small  o notation. Big  O notation gives a– – –  
way to say that one function is asymptotically no more than another. To say that 
one function is asymptotically less than another we use small  o notation. The–  
difference between the big  O and small  o notation is analogous to the difference– –  
between ≤ and <.

• Definition: (Small-o notation)
o Let f and g be two functions f, g : N → R+ . Say that f(n) = o(g(n)) if 
limn→∞(f(n) / g(n)) = 0
o In other words, f (n) = o(g(n)) means that, for any real number χ > 0, a number n0 

exists, where f (n) < c ⋅ g(n) for all n ≥ n0 .
• Definition: (Time complexity class)

o Let t : N → N be a function. Define the time complexity class, TIME(t(n)), to be 
TIME(t(n)) = { L | L is a language decided by an O(t(n)) time Turing machine}

• Any language that can be decided in o(n ⋅ log n) time on a single  tape Turing machine–  
is regular.

• This discussion highlights an important difference between complexity theory and 
computably theory. In computability theory, the Church  Turing thesis implies that all–  
reasonable models of computation are equivalent, that is, they all decide the same class 
of languages. In complexity theory, the choice of the model affects the time complexity 
of languages.

COMPLEXITY RELATIONSHIPS AMONG MODELS
• Let t(n) be a function, where t(n) ≥ n. Then every t(n) time multitape Turing machine has an equivalent O(t2 (n)) time 

single  tape Turing machine.–
• Definition: Let N be a nondeterministic Turing machine that is a decider. The running time of N is the function f : N → 

N , where f(n) is the maximum number of steps that N uses on any branch f its computation on any input of length 
n.

• Let t(n) be a function, where t(n) ≥ n. Then every t(n) time 
nondeterministic single  tape Turing machine has an equivalent–  
2O(t(n)) time deterministic single tape Turing machine.

THE CLASS P
• Exponential time algorithms typically arise when we solve problems by searching through a 

space of solutions, called brute  force search.–
• P is the class of languages that are decidable in polynomial time on a deterministic single – 

tape Turing machine. In other words: P = Uk TIME(nk )

The class P plays a central role in our theory and is important because
• P is invariant for all models of computation that are polynomially equivalent to the 

deterministic single  tape Turing machine.–
• P roughly corresponds to the class of problems that are realistically solvable on a 



• Every context  free language is a member of P–
• P is closed under union, concatenation and complement

computer.

Examples of prob lems in P :
• PATH = {<G,s,t> | G dir. graph with dir. Path from s to t} is in P

A polynomial time algorithm for PATH is (TM M with input <G,s,t> behaves as
1. Place a mark on node s
2. Repeat the stage 3 until no additional nodes are marked :
3. Scan all edges of G. If an edge (a,b) is found going from a marked node a to an 

unmarked node b, mark b
4. If it is marked, accept. Otherwise, reject.

• RELPRIME = {<x,y>| x and y are relatively prime} is in P 
• CONNECTED = {<G> | G is a connected undirected graph} is in P 

Proof idea : Same demonstration as PATH but with an additional step looking for unmarked 
nodes.

• TRIANGLE (3-CLIQUE), 4-CLIQUE and 5-CLIQUE are in P. But Caution : k-CLIQUE (n 
> 5) is in NP  !!! Proof idea for triangle : Select all sub-sets of 3 vertices and check if 
they are connected. Graphe of k on n => O(n! / (n-k)! * k!) = O(n3)

THE CLASS NP
• NP means Non-Deterministic Polynomial
• Hamilton  Path: – HAMPATH = {<G,s,t> | G is a directed graph with a Hamiltonian path from s to t}
• The HAMPATH problem does have a feature called polynomial verifiability.
• Some problems may not be polynomial verifiable. For example, take HAMPATH , the 

complement of the HAMPATH problem. Even if we could determine (somehow) that a graph did 
not have a Hamiltonian path, we don t know of a way for someone else to verify its non-’
existence without using the same exponential time algorithm for making the determination in 
the first place.

• A verifier for a language A is an algorithm V, where A = {w | V accepts <w,c> for some string c}
• We measure the time of a verifier only in terms of the length of w, so a polynomial time 

verifier runs in polynomial time in the length of w.
• NP is the class of languages that have polynomial time verifiers.

• A verifier uses additional information, represented by the symbol c, to verify that a 
string w is a member of A. This information is called a certificate, or proof, of 
membership in A. Observe that, for polynomial verifiers, the certificate has polynomial 
length (in the length of w) because that is all the verifier can access in its time bound.

• A language is in NP iff it is decided by some nondeterministic polynomial time Turing 
machine. 

• NTIME(t(n)) = {L | L is decided by a O(t(n)) time nondeterministic Turing machine}
• NP = UkNTIME(n

k
)

• P is the class of languages that are decidable in polynomial time on a non-deterministic 
Turing machine.

• The best method known for solving problems in NP deterministically uses exponential 
time algorithm : NP ⊆ EXPTIME = UkTIME(2

n^k
)

Examples of prob lems in NP :
CLIQUE = { <G,k> | G is an undirected graph with a k – clique }  /  CLIQUE is in NP.
Verifier for CLIQUE : On input <<G,k>,c>

1. Test whether c is a set of nodes in G
2. Test whether G contains all edges connecting nodes in c
3. If both pass, accept; otherwise reject.

OR we construct a non-deterministic polynomial TM that decides 
CLIQUE : On input <G,k> :

1. Nondeterministically select a subset c of k nodes of G
2. test whether G contains all edges connecting nodes in c
3. if yes, accept; otherwise reject.

ISO = {<G, H> | G and H are isomoprhic graphs} is in NP. Proof idea  :
1. Check the numbers of edges and vertices are the same                 3.  Check whether they have the same connections
2. Select a bijection of the edges of both graphs non-deterministically

Notes on NP :

SUBSET-SUM = { <S,t> | S = {x1,...,xk } and for some 
{y1,...,yj} ⊆ {x1,...,xk}, we have ∑yi = t}
SUBSET-SUM is in NP.
Verifier for SUBSET-SUM: : On input <<S,t>,c>

1. Test whether c is a collection of numbers that sum to 
t

2. Test whether S contains all numbers in c
3. If both path, accept; otherwise reject.

P versus NP
• P = class of languages for which membership can be decided quickly
• NP = class of languages for which membership can be verified quickly
• We don't know if P = NP (one of the greatest unsolved problem). We have not been able to 

prove that a language in NP is not in P. We think however that P ≠ NP
• Obviously P ⊆ NP since deterministic TMs are special cases of non-deterministic TMs

NP and Co-NP
• The class co-NP contains the languages for which the complement is in NP
• HAMPATH, CLIQUE and SUBSET-SUM are not obviously also in NP. Verifying that 

something is not present seems to be more difficult than verifying that it is present.
• We believe that NP ≠ co-NP, but clearly P = co-P.

NP-COMPLETENESS
• SAT = { <Φ> | Φ is a satisfiable Boolean formula }
• Cook  Levin theorem: – SAT ∈ P ⇔ P = NP
• We  have already defined the concept of reducing one problem to another. 

When problem A reduces to problem B, a solution to B can be used to 
solve A. Now we define a version of reducibility that takes the efficiency of 
computation into account. When problem A is efficiently reducible to problem 
B, an efficient solution to B can be used to solve A efficiently.

• Definition: A function f : Σ*→Σ* is a polynomial time computable function if 
some polynomial time Turing machine M exists that halts with just f(w) on 
its tape, when started on any input w.

• Definition: Language A is polynomial time mapping reducible, or simply 
polynomial time reducible, to language B, written A ≤ p B, if a polynomial 
time computable function f : Σ*→Σ* exists, where for every w, w∈ A⇔ f 
(w)∈ B
The function f is called the polynomial time reduction of A to B. If A ≤ p B 
and B∈ P , then A∈ P .

• 3SAT = { <Φ> | Φ is a satisfiable 3-CNF-formula}
• 3SAT is polynomial time reducible to CLIQUE. This means, if CLIQUE is 

solvable in polynomial time, so is 3SAT.
• Definition: A language B is NP  complete if it is satisfies two conditions:–

 1. B is in NP
 2. Every A in NP is polynomial time reducible to B.

• If B is NP  complete and – B∈ P , then P = NP. No one has been found so 
far.

• If B is NP  complete and – B ≤ p C  for C in NP, then C is NP  complete.–
• SAT is NP  complete. (Cook-Levin theorem)–
• 3SAT is NP  complete.–

• CLIQUE is NP  complete. Proof idea :for the reduction of – 3SAT to CLIQUE
The nodes of G are organized in k groups of three nodes each 
called triples. Each triple corresponds to one of the clauses in 
Φ, and each note in a triple correspond to a literal in the 
clause. Label each node of G with its corresponding literal in Φ
The edges of G connect all but 2 types of pairs of nodes : No 
edge is present between nodes in the same triple and no edge 
is present between 2 nodes with contradictory labels, as in X2 
and X2. The the clause is satisfiable if the graph has a k-
CLIQUE.

• If G is an undirected graph, a vertex cover of G is a subset of the nodes where every edge of G touches 
one of those nodes. The vertex cover problem asks for the size of the smallest vertex cover. 

• VERTEX-COVER = { <G,k> | G is an undirected graph that has a k – node vertex cover }
• VERTEX-COVER is NP  complete. Proof idea :reduction of – 3SAT to VERTEX-COVER

1. Each variable x in Φ produces two nodes labelled x 
and x. 2. Each clause produces three nodes labelled 
as the literal, which are all connected together. 3. 
Each node x produced in 1. is connected to all nodes 
in G. 4. Each node x produced in 1. is connected to all 
nodes in G. There are 2m + 3l nodes in G (Φ has m 
variables and l clauses) We look for a k = m + 2l 
vertex cover.

• HAMPATH is NP  complete.–  
• SUBSET-SUM is NP  complete.–

HAMPATH ≤ p HAMCIRRCUIT (new vertex added to the graph) 
HAMCIRCUIT ≤ p  TSP (HAMCIRCUIT is a specific case of TSP)
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