
Blockchain 2.0 Jerome Kehrli / niceideas.ch

Blockchain 2.0 - From Bitcoin Transactions
to Smart Contract applications
by Jerome Kehrli

Written on Tuesday Nov 22, 2016

Since Satoshi's White paper came online, other cryptocurrencies have proliferated
on the market. But irrespective of the actual currency and the frequently debated
deflation issues, the actual revolution here is the Blockchain protocol and the
distributed computing architecture is supports.

Just as thirty years ago the open communications protocol created profitable
business services by catapulting innovation, the blockchain protocol has the
potential of being the same kind of breakthrough, by offering a just as disruptive
foundation on which businesses start to emerge. Using the integrity lattice of the
transactions, a whole suite of value trading innovations are beginning to enter the
market.

The key innovation here are Smart Contracts. This relatively new concept involves
the development of programs that can be entrusted with money.

Smart Contracts are autonomous computer programs that, once started, execute
automatically and mandatorily the conditions defined beforehand, such as the
facilitation, verification or enforcement of the negotiation or performance of a
contract.
They are most of the time defined in a Programming Language, which in the case of
the Ethereum Blockchain 2.0 technology form a Turing Complete Programming
Language.
Smart Contracts are implemented as any other software program,
using conditions, loops, function calls, etc.

If blockchains give us distributed trustworthy storage, then smart contracts give
us distributed trustworthy computations. To illustrate a possible use of smart
contracts, let's take the example of travel insurance: finding that 60% of the
passengers insured against the delay of their flight never claimed their money, a
team created during a hackathon in London in 2015 an Automated Insurance system
based on smart contracts.
With this service, passengers are automatically compensated when their flight is
delayed, without having to fill out any form, and thus without the company having to

Page 1

https://en.wikipedia.org/wiki/Turing_completeness

Blockchain 2.0 Jerome Kehrli / niceideas.ch

process the requests. The blockchain's contribution here consists in generating the
confidence and security necessary to automate the declarative phases without
resorting to a third party.

The main advantage of putting Smart Contracts in a blockchain is the guarantee
provided by the blockchain that the contract terms cannot be modified. The
blockchain makes it impossible to tamper or hack the contract terms.
By developing ready to use programs that function on predetermined conditions
between the supplier and the client, smart programs ensure a secure escrow service
in real time at near zero marginal cost.

Smart Contracts enable to reduce the costs of verification, execution, arbitration and
fraud prevention. They enable to overcome the moral hazard problem. The american
cryptograph Nick Szabo is deemed to be the inventor of the concept, whom he
spoked about in 1995 already. He used to mention the example of a rented car,
whose smart contract could return the control to the owner in case the renter
forgives the paiements.
Interestingly, as a sidenote, Nick Szabo is also believed by some to be one of the
person behind the Satoshi Nakamoto identity.

In a general way, Smart Contracts from the heart of the Ethereum blockchain. Even
if Rootstock aims at enabling the implementation of Smart Contracts on the bitcoin
blockchain, the development of Smart Contracts technology is really rather related
to Ethereum. The next versions of Ethereum are increasingly targeted to offering end
users an App-Store-like User Experience to Smart Contracts.

This article intents to be a pretty complete introduction to Blockchain 2.0 technology
and Smart Contract applications, detailing both of them as well as list the state of
the state of the art of possible use cases being currently studied or discussed.
A big part of this article focuses on the Ethereum blockchain.

(One might want first article in this serie : Blockchain explained that provides a
pretty complete introduction to the initial bitcoin blockchain technology)

Also one might want to see part of this article as a slideshare presentation available
here :http://www.slideshare.net/JrmeKehrli/blockchain-20-69472625.

Table of Contents
Blockchain 2.0 - From Bitcoin Transactions to Smart Contract applications...1
1. Blockchain 2.0 and Smart Contracts...3

1.1 From Transactions to Smart Contracts...3
1.2 Smart Contracts Overview...5
1.3 A little glimpse of Smart Contracts from finance perspective.......................7

2. Smart Contracts Operation..8
2.1 Smart Contracts Design...8

Page 2

http://www.slideshare.net/JrmeKehrli/blockchain-20-69472625
https://www.niceideas.ch/roller2/badtrash/entry/blockchain-explained-beta
https://medium.com/@CryptoIQ.ca/rootstock-smart-contracts-on-the-bitcoin-blockchain-e52b065421a8#.5n6ksxchv
https://www.ethereum.org/

Blockchain 2.0 Jerome Kehrli / niceideas.ch

2.2 Smart Contract and Oracles...9
2.3 DAO..11

3. Blockchain 2.0 projects...12
3.1 New Blockchain technologies..12
3.2 A focus on R3/Corda and Smart Contract Templates................................13
3.3 A first focus on Ethereum and Turing Complete Smart Contracts...............14

4. Ethereum in details..15
4.1 Ethereum concepts...15
4.2 Ethereum and bitcoin differences..18
4.3 Etherscript...21
4.4 Hello World in Ethereum..22
4.5 Further Ethereum Examples...26
4.6 Private chains in Ethereum...27
4.7 The DAO and The DAO Attack...27

5. Smart Contracts use cases..29
6. Issues and challenges...31
7. Conclusion..33

1. Blockchain 2.0 and Smart Contracts

Smart Contracts are most often the central component of the next-generation
blockchain platforms.
Blockchain technology is much broader than just bitcoin. The sustained levels of
robust security achieved by public cryptocurrencies have today really proven that
this new wave of blockchain technologies can provide efficiencies and intangible
technological benefits very similar to what the internet has done in the early 90s.
Blockchains are a very powerful technology, capable of going much further than only
"simple" financial transaction; a technology capable of performing complex
operations, capable of understanding much more than just how many bitcoins one
currently has in his digital wallet.
This is where the idea of Smart Contracts comes in. They form the cornerstone for
coming enterprise blockchain applications.

In this article, we will explore what a smart contract is, how it works, and how it is
being used.

1.1 From Transactions to Smart Contracts

The Blockchain 2.0 is an evolution of the blockchain protocol enabling not only to
exchange transaction but rather code and programs in the form of Smart Contracts
Now developers are allowed to build programs and API's on the Blockchain Protocol.
This relatively new concept involves the development of programs that can be
entrusted with money.
Smart contracts are programs that encode certain conditions and outcomes.
For instance, When a transaction between two parties occurs, the program can verify

Page 3

Blockchain 2.0 Jerome Kehrli / niceideas.ch

if the product/service has been sent by the supplier. And only after this verification is
the sum transmitted to the suppliers account.

By developing ready to use programs that function on predetermined conditions
between the supplier and the client, smart programs ensure a secure escrow service
in real time at near zero marginal cost

Apart from Financial transactions, smart contracts are now entering a whole lot of
different industry.
One can refer to the section 5. Smart Contracts use cases to have a look at the use
cases and the industries that can and will be disrupted by the blockchain technology.

Ethereum

Ethereum intends to bring together both a crypto ledger and a Turing-
complete programming language. Ethereum's objectives is to turn a simple browser
to a Swiss-army knife of blockchain applications by providing tools that allow non-
technical users to truly leverage the technology.

Ethereum aims to implement a globally decentralized, un-ownable, digital
computer for executing peer-to-peer contracts in the form of actual software
programs.
Put more simply, Ethereum is a world computer you can't shut down.

Page 4

https://www.niceideas.ch/roller2/badtrash/entry/blockchain-2-0-from-bitcoin#sec5

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Smart Contract Definition

Smart contract is a term used to describe computer program code that is
capable of facilitating, executing, and enforcing the negotiation or

performance of an agreement (i.e. contract) using blockchain technology.

The entire process is automated can act as a complement, or substitute,
for legal contracts, where the terms of the smart contract are recorded in

a computer language as a set of instructions

1.2 Smart Contracts Overview

A smart contract is a digitally signed, computable agreement between two or more
parties. A virtual third party - a software agent - can execute and enforce (at least
some of) the terms of such agreements.
In the context of the blockchain, where it truly takes it sense, a smart-contract is an

Page 5

https://www.niceideas.ch/roller2/badtrash/mediaresource/b6da3764-76e8-4507-a930-86c814ba5347

Blockchain 2.0 Jerome Kehrli / niceideas.ch

event-driven program, with state, that runs on a replicated, shared ledger and which
can take custody over assets on that ledger.

Smart contracts provide a viable method of issuing tracking ownership of
unique digital representations of value, which we call money.

Smart contracts are simply computer programs that act as agreements where the
terms of the agreement can be preprogrammed with the ability to self-execute and
self-enforce itself.
The main goal of a smart contract is to enable two anonymous parties to trade and
do business with each other, usually over the internet, without the need for a trusted
middleman.
The origin and history of smart contracts is much older than bitcoin and dates back
to the 90's. The term "Smart Contract' was first used in 1993 by one of bitcoin's
alleged creators, Nick Szabo, and referred to self-automated computer
programs that can carry out the terms of any contract.

• Traditional physical contracts, such as those created by legal professionals

today, contain legal language on a vast amounts of printed documents and
heavily rely on third parties for enforcement. This type of enforcement is not
only very time consuming, but also very ambiguous. If things go astray,
contract parties must often rely on the public judicial system to remedy the
situation, which can be very costly and time consuming, down to sometimes
useless.

• Smart contracts on the blockchain, created by computer programmers, are

entirely digital and written using programming code languages. This code
defines the rules and consequences in the same way that a traditional legal
document would, stating the obligations, benefits and penalties which may be

Page 6

https://www.niceideas.ch/roller2/badtrash/mediaresource/0071693c-3bc0-4105-9b37-724e28c6da94

Blockchain 2.0 Jerome Kehrli / niceideas.ch

due to either party in various different circumstances. The big difference is
that this code is automatically executed by a distributed ledger system, in a
non-repudiable and unbreakable way.

Smart Contract code have some unique characteristics.

• Deterministic : Since a Smart Contract code is executed on multiple

distributed nodes simultaneously, it needs to be deterministic i.e. given an
input, all nodes should produce the same output. That implies the Smart
Contract code should not have any randomness; it should be independent of
time (within a small time window because the code might get executed a
slightly different time in each of the nodes); and it should be possible to
execute the code multiple times (idempotence).

• Immutable : Smart Contract code is immutable. This means that once

deployed, it cannot be changed. This of course is beneficial from the trust
perspective but it also raises some challenges (e.g. how to fix a code bug) and
implies that Smart Contract code requires additional due
diligence/governance.

• Verifiable: Once deployed, Smart Contract code gets a unique address.

Before using the Smart Contract, interested parties can and should view or
verify the code.

Smart Contracts benefits

For a wide range of potential applications, blockchain-based smart contracts could
offer a number of benefits:

• Speed and real-time updates : because smart contracts use software code

to automate tasks that are otherwise typically accomplished through manual
means, they can increase the speed of a wide variety of business processes.

• Accuracy : automated transactions are not only faster but less prone to

manual error.

• Lower execution risk. The decentralized process of execution virtually

eliminates the risk of manipulation, nonperformance, or errors, since
execution is managed automatically by the network rather than an individual
party.

• Fewer intermediaries : smart contracts can reduce or eliminate reliance on

third-party intermediaries that provide "trust" services such as escrow
between counterparties.

• Lower cost : new processes enabled by smart contracts require less human

intervention and fewer intermediaries and will therefore reduce costs.

Page 7

Blockchain 2.0 Jerome Kehrli / niceideas.ch

• New business or operational models : because smart contracts provide a

low-cost way of ensuring that the transactions are reliably performed as
agreed upon, they will enable new kinds of businesses, from peer-to-peer
renewable energy trading to automated access to vehicles and storage units.

1.3 A little glimpse of Smart Contracts from finance
perspective

Just as a Bank account with embedded instructions

There are some elements of bank accounts that behave like smart contracts.
For instance, a bank account has a balance. Every month, for instance, there can be
automated payments deducting amounts to pay various bills or fees, for instance for
pension plans, If there isn't enough money on the bank account, the payment fails,
the owner can get fined, and another workflow is triggered.
There are instructions that need to be set up and associated with the account.

This is similar to what a smart contract can do, except that a smart contract running
on a blockchain is run by many parties rather than being controlled by a single one.

How is this different to automated banking payments?

• Control : The bank is the ultimate guardian of any bank account. It has

complete control, and can arbitrarily add money to an account (well, that
never happens !) or subtract some (this does happen, and one needs to argue
to get it back). In a blockchain ecosystem, there are no single source of control
and participant agrees on decisions by distributed consensus, meaning that
multiple parties are constantly checking and re-checking updates to the
ledgers, and anything that doesn't conform to pre-agreed rules is rejected by
all participants.

• Code : With a bank account, there is some logic creating transactions on a

monthly basis. That code sits on one computer and is executed by one party
(the bank). There are internal controls and reconciliations, but there is no
external validation.
With smart contracts running on a blockchain, the logic is run in parallel on all
the participating computers, and the results are compared by all participants.
Participants only change their own version of the ledger if they agree the
results. No one can cheat a blockchain, in theory of course.

• Transparency : For all participants in a blockchain ecosystem to run the

same code, each verifying the other, the logic of the smart contract must be
visible to all. This means anyone can look into a smart contract, and if use it if
one wants.
There will be smart contracts for general usage, and also very specific smart

Page 8

Blockchain 2.0 Jerome Kehrli / niceideas.ch

contracts. The transparency is both a pro and a con. It's useful to all
stakeholders of the contract to agree on what happens; on the other hand it's
not just the stakeholders that can see what happens - it's everyone on the
network. Privacy in blockchains is a contentious issue. There are solutions to
the privacy-vs-validation tension being discussed, some using zero-knowledge
proofs; which will be the subject of another post.

• Flexibility : The single logic that applies to a bank account is pretty much

limited to automating payments. It would be difficult, for instance, to
automate a payment from a salary account to a savings account every day it's
sunny, then have it all sent back when there is a storm (the 'saving up for a
rainy day' smart contract).
A so-called "Turing complete" smart contract can do anything that a normal
computer can do, though the blockchain version will run much more slowly
and be more expensive to run than on a regular computer (depending on the
set-up of the blockchain), because ultimately all computers on the network
need to the code in parallel and of course they have to be paid for it.

2. Smart Contracts Operation

In order to understand how smart contracts work, it is important to first make the
distinction between the smart contract code and how/what that code is being
applied to.

2.1 Smart Contracts Design

A smart contract can be broken down into two separate components:

• Smart Contract Code - The code that is stored, verified and executed on a

blockchain.

• Smart Legal Contracts - The use of the smart contract code that can be

used as a complement, or substitute, for legal contracts.

Page 9

Blockchain 2.0 Jerome Kehrli / niceideas.ch

A Smart Contract is a computer program that runs on a shared, replicated ledger,
which can process and store information, as well as receive, store and send value.

How Smart Contracts work

1. Coding : what goes into a Smart Contract
Because smart contracts work like computer programs, it is very important
that they do exactly what the parties want them to do. This is achieved by
inputting the proper logic when writing a smart contract (more on that later).
The code behaves in predefined ways and doesn't have the linguistic nuances
of human languages, thus, it has now automated the "if this happens then do
that" part of traditional contracts.

2. Distributed Ledgers : how the smart contract is sent out
The code is encrypted and sent out to other computers via a distributed
network of nodes running a distributed ledger. If this is done via public
permissionless blockchain such as bitcoin, the contract is sent out similar to
the way that a network update of a bitcoin transaction would occur. This can
also be done in a permissioned or hybrid distributed ledger platform such as
the R3 Distributed Ledger.

3. Execution : how it is processed
Once the computers in this network of distributed ledgers receive the code,
they each come to the same agreement or consensus on the results of the
code execution. The network would then update the distributed ledgers to

Page 10

https://www.niceideas.ch/roller2/badtrash/mediaresource/0d6dab61-2db6-41fa-81a5-974686e2a538

Blockchain 2.0 Jerome Kehrli / niceideas.ch

record the execution of the contract, and then monitor for compliance with the
terms of the smart contract. In this type of system, single party manipulation
is averted because control over the execution of the smart contract is no
longer possible since that execution is not in the hands of a single party.

2.2 Smart Contract and Oracles

Some smart contracts systems, including the one built into Bitcoin, are strictly
deterministic. In order to interact with the real world, these systems rely on
informations (and cryptographic signatures) submitted by outside systems called
"oracles".

Oracles are trusted entities which sign claims about the state of the world. Since
the verification of signatures can be done deterministically, it allows deterministic
smart contracts to react to the (non-deterministic) outside world.

Oracles are required to connect smart contracts to critical data feeds, any
web API or various accepted payment methods.

As mentioned previously, Smart Contracts are executed by examining all the
conditions of execution which have been defined in advance in the contract code.
For example, if a contract includes a condition to run after January 1, 2017, it will be
impossible to execute it before that date.
The problem then arises, naturally, from the validation of these conditions of
execution. Two scenarios are then possible:

• The execution conditions of the contract are linked to other entries in the

blockchain or are simple time markers. In this case, checking these execution
conditions is very easy: the contract is programmed to verify that these
entries exist or that the execution time is passed, and it executes when this is
the case.

• The conditions of execution of the contract are outside the blockchain

(realization of a service, occurrence of an event ...). In this case, the execution
of the contract requires the use of a trusted third party, called in the Ethereum
jargon an "oracle".

An oracle is instructed to enter the blockchain information reliably so that the
contract can run properly and can be constituted in several ways:

• Prior designation of a trusted third party known to both parties;

• Reference to a database considered "trustworthy" (for example in the case of

a sports betting, possibility of referring to the result recorded on the site of a
sports newspaper);

Page 11

Blockchain 2.0 Jerome Kehrli / niceideas.ch

• Using a decentralized Oracle service. It is an existing service on the blockchain

involving many participants. Each participant votes for the result he / she
considers to be accurate and it is the consensus among the participants that
determines the final result sent to the contract. Decentralized oracle projects
already exist, notably the Oraclize project

Long story short, the Oracle stands in between of the External world data or API and
the Smart Contract.
As seen on the Oraclize web site :

The challenge with Oracles

An oracle, in the blockchain sense, is a third party which sends to your on-chain
smart contract some specific data your smart contract code cannot fetch by itself. As
the oracle is a centralized party, one shouldn't take its response for granted.
While hacking the blockchain is proven to be very difficult and unlikely to happen,
Oracle form a Single Point of Failure and are vulnerable to attacks.

For example, if one asks an oracle to give last trading price of ETH/USD (forex), then
the oracle needs to fetch this data from some exchanges on the Internet and than
send this data back.
An attacker could compromise the link between the Oracle and the Forex Exchange
company and make the Oracle send back to the blockchain a compromised value.
This is the reason why, by itself, the oracle cannot be trusted.

In the context of Smart Contracts, it is key to be able to trust the data fetched from
the outside world and the data provider (in our example this is the exchange trading

Page 12

http://www.oraclize.it/
http://www.oraclize.it/
https://www.niceideas.ch/roller2/badtrash/mediaresource/9360e56b-a11e-4f7f-b250-4b103595c382

Blockchain 2.0 Jerome Kehrli / niceideas.ch

the ETH/USD pair) and this is difficult.
It the example above, the risk can be mitigated by using different data-sources and
using them to determine consensus.

Oraclizes provides its own solution to this trust issue and other initiatives work on
other kind of solutions, for instance Codius.

Discussing this issue and its solutions further exceeds the scope of this article.

2.3 DAO

Smart Contracts and blockchain 2.0 technologies have made possible the
emergence of special organizations called DAOs.

A Decentralized Autonomous Organization (DAO) is an organization that is run
through rules encoded in computer programs called smart contracts. These rules
provide a community with unbreakable, secured, universal, public and untamperable
governance rules.
A DAO's financial transaction records and program rules are maintained on a
blockchain.

A DAO is organized to run without any form of human managerial interactivity,
provided the smart contracts are supported by a Turing complete platform. Ethereum
is such a platform and thus enables such DAOs.

A DAO is a form of incorruptible organization owned by the people who created it
and finance it and whose rules are public.
It brings three new elements in comparison with a traditional organization:

• A DAO cannot be stopped or broken

• No single person or organization can control the DAO. None can tamper with it,

hack it or cheat with it.

• Everything in the DAO is public and transparent

It really is a global organization, aimed at being open to everyone. It suffers of no
jurisdiction and works with software code and where nobody can fraud.

Corporations and businesses as DAOs

Corporations are, if you strip everything away down to the bare bones, a complex
set of contracts and agreements. Most simplistically, employment contracts set the
terms for workers pay, duties and responsibilities. Contracts with vendors and
customers ensure supply chains are established and maintained. Lease agreements
cover office space, vehicles, large machinery and rights to intellectual property.
And so on ... other parts or functions are covered by other contractual elements.

Page 13

https://github.com/codius/codius/wiki/Smart-Oracles:-A-Simple,-Powerful-Approach-to-Smart-Contracts

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Smart contracts exist without the need for those institutional layers. An organization
can be built where all of these agreements are replaced by such smart contracts,
and in essence the corporation will exist entirely as an entity on a blockchain. As
such it will be a decentralized organization, existing across all the nodes of the
network.

A DAO would be in the business of generating economic profits if it were structured
as a corporation (Decentralized Autonomous Corporation), and it could raise capital
through crowdsales of tokens directly to the blockchain, akin to shares in a public
company. Tokenholders would be entitled to their share of profits in the form of
dividends, and could vote on the direction of the company. Those tokens could also
trade on a secondary market (also on the blockchain) for people to buy and sell
them at will.

3. Blockchain 2.0 projects

After the initial blockchain of the Bitcoin, many other projects started to flourish
pretty soon. Interstingly, the blockchainb appear to be able to give life to some
concepts designed or discussed many years before.
Nick Szabo described Smart Contracts 20 years ago. Interestingly, he has been
involved pretty early in the bitcoin project as well.

3.1 New Blockchain technologies

In the world of Blockchain 2.0, the main difference between the different initiatives
and technologies is really related to the form of support for Smart Contracts:

No Smart
Contracts

Smart Contracts possible
Turing-Complete
Smart Contracts

What?

Distributed
transaction or
accounting
storage

Distributed computing of
logic available in pre-
designed templates

Distributed
computing of any
logic

Example
technologies

Bitcoin (public)
Litecoin (public)
Multichain
(private)

NXT (public)
R3 (private)

Ethereum (public)
Eris (private)
Clearmatics
(private)

Presentation of some of them

Bitcoin's platform is great for processing bitcoin transactions, but otherwise has
very limited compute ability. Within the scripts of bitcoin transactions there is only
very limited ability to implement rich logic.
An example of what is possible in bitcoin is logic requiring multiple signatories to
sign a transaction before a payment is made, like needing two signatories in a

Page 14

https://bitcoinmagazine.com/articles/smart-contracts-described-by-nick-szabo-years-ago-now-becoming-reality-1461693751

Blockchain 2.0 Jerome Kehrli / niceideas.ch

cheque. However major changes would need to be made to both the mining
functions and the mining incentivisation schemes to enable smart contracts proper
on Bitcoin's blockchain.

Sidechains, i.e. blockchains connected to Bitcoin's main blockchain could enable
smart contract functionality: by having different blockchains running in parallel to
Bitcoin, with an ability to jump value between Bitcoin's main chain and the side
chains, side chains could be used to execute logic.

NXT is an public blockchain platform which includes a selection of smart contracts
that are currently live. However it is not Turing-complete, meaning that it's not
possible to code up anything one wants, one has to use the existing templates.

R3/Corda is the private blockchain technology of the R3 consortium. The R3
consortium is constituted by more than 70 of the world biggest financial institutions
in research and development of blockchain usage in the financial system. The
consortium's joint efforts have created an open-source blockchain platform called
Corda especially geared towards the financial world as it handles more complex
transactions and restricts access to transaction data. The aim of Corda is to provide
a platform with common services to ensure that any services built on top are
compatible between the network participants, whilst still fostering innovation and
faster time to market as the underlying infrastructure would be accepted and
understood by at least the founding firms.

Ethereum is a public blockchain platform which is currently the most advanced
smart contract enabled blockchain. With a "Turing complete" coding system,
theoretically one can put any possible logic into an Ethereum smart contract, and it
will be run by the whole network. There are mechanisms in place to prevent abuse,
and of course one needs to pay for compute power, by passing in "ETH" tokens,
which act as payment for the miners who run the code.

3.2 A focus on R3/Corda and Smart Contract Templates

Corda is a distributed ledger platform designed from the ground up to record,
manage and synchronize financial agreements between regulated financial
institutions. It is heavily inspired by and captures the benefits of blockchain systems,
without the design choices that make blockchains inappropriate for many banking
scenarios.

Key features

R3/Corda:

• has no unnecessary global sharing of data: only those parties with a legitimate

need to know can see the data within an agreement

Page 15

Blockchain 2.0 Jerome Kehrli / niceideas.ch

• choreographs workflow between firms without a central controller

• achieves consensus between firms at the level of individual deals, not the

level of the system

• benefits from a design directly enabling regulatory and supervisory observer

nodes

• provides transactions validated by parties to the transaction rather than a

broader pool of unrelated validators

• supports a variety of consensus mechanisms

• records an explicit link between human-language legal prose documents and

smart contract code

• has no native cryptocurrency

R3/Corda uses Smart Contract Templates which captures a Smart Contract
as Ricardian Contract triple of "prose, parameters and code".

This is a very specific model that won't be described further in this article.
We will now mostly focus on Turing-Complete Smart Contracts and
specifically the Ethereum project.

Page 16

https://www.niceideas.ch/roller2/badtrash/mediaresource/47a12461-57ad-4547-b7e4-b85552e0a357

Blockchain 2.0 Jerome Kehrli / niceideas.ch

3.3 A first focus on Ethereum and Turing Complete Smart
Contracts

Ethereum is software running on a network of computers that ensures that data and
small computer programs called smart contracts are replicated and processed on all
the computers on the network, without a central coordinator. The vision is to create
an unstoppable censorship-resistant self-sustaining decentralised world computer.
The official website is https://www.ethereum.org

It extends the blockchain concepts from Bitcoin which validates, stores, and
replicates transaction data on many computers around the world (hence the term
'distributed ledger'). Ethereum takes this one step further, and also runs computer
code equivalently on many computers around the world.

What Bitcoin does for distributed data storage, Ethereum does for distributed data
storage plus computations. The small computer programs being run are called smart
contracts, and the contracts are run by participants on their machines using a sort of
operating system called a "Ethereum Virtual Machine".

4. Ethereum in details

The vision of Ethereum is an unstoppable censorship-resistant sefl-sustaining
decentralized world computer.

Concept Description

ETH
Ethereum's inbuilt native cryptocurrency, used for
paying for smart contracts to run

Ethereum VM,
Swarm and
Whisperer

Decentralized Computer,
file storage and
communication protocols

Solidity, Serpent and LLL Smart Contract Programming Language

geth, eth, pyethapp
The main Ethereum software, written in different
language

Frontier, Homestead,Metrop
olis, Serenity

Friendly names for different releases

We will now see the concepts of Ethereum in a more detailed way.

4.1 Ethereum concepts

Computers need to be able to calculate, store data, and communicate. For Ethereum
to realize its vision as an unstoppable censorship-resistant self-sustaining
decentralized 'world' computer, it needs to be able to do those three things fairly
efficiently and in a robust way.

Page 17

https://www.ethereum.org/

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Ethers

The digital tokens or coins in Ethereum are called ether. Ether are used as crypto
fuel or costs of transaction. Developers have to use ether to submit smart contract
rules/code to the blockchain and users have to spend or burn ether to invoke
transactions for an application. Transactions will roll back if they run out of gas (the
amount of ether specified). Ether can be traded against bitcoins and other fiat
currencies via cryptocurrency exchanges.

As a matter of fact, there are several different currency names for different scales:

We'll indistrincly use Ether or simply ETH below to design the Ethereum
cryptocurrency. Swarm and Whisper

The Ethereum Virtual Machine is the "virtual world computer' compotent that can
runs and executes smart contract's logic.
This is computation without relying on a central server.

Swarm is Peer-to-Peer file sharing, similar to BitTorrent, but incentivized with
micropayments of Ethers. Files are split into chunks, distributed and stored with
participating volunteers. These nodes that store and serve the chunks are
compensated with ETH from those storing and retrieving the data.
This is file storage without relying on a central server.

Whisper is an encrypted messaging protocol that allows nodes to send messages
directly to each other in a secure way and that also hides the sender and receiver
from third party snoopers.
This is communications without relying on a central server.

Smart Contract languages: Solidity / Serpent, LLL

Page 18

https://www.niceideas.ch/roller2/badtrash/mediaresource/f7e82142-a7f0-4691-a726-8daec392e896

Blockchain 2.0 Jerome Kehrli / niceideas.ch

There are three common languages smart contracts are written in, which can be
compiled into smart contracts and run on Ethereum Virtual Machines. They are:

• Solidity : similar to the language Javascript. This is currently the most popular

and functional smart contract scripting language.

• Serpent : similar to the language Python, and was popular in the early history

of Ethereum.

• LLL (Lisp Like Language) : similar to Lisp and was only really used in the

very early days. It is probably the hardest to write in.

Ethereum software: geth, eth, pyethapp

The official Ethereum clients are all open source. The most popular clients are:

• geth : written in a language called GO - https://github.com/ethereum/go-

ethereum

• eth : written in C++ - https://github.com/ethereum/cpp-ethereum

• pyethapp : written in Python - https://github.com/ethereum/pyethapp

These are all command-line based programs (think green text on black backgrounds)
and so additional software can be used for a nicer graphical interface.
Currently the official and most popular graphical one is Mist
- https://github.com/ethereum/mist, which runs on top of geth or eth.

Accounts

In Bitcoin, there is a concept called address where bitcoins are stored - like a bank
account number, but for bitcoins. In Ethereum these are commonly called accounts
and there are two types:

• Accounts that only store ETH : these are similar to Bitcoin addresses and

are sometimes known as Externally Owned Accounts (EOAs). One makes
payments from these accounts by signing transactions with the appropriate
private key.

• Accounts that store ETH and have code (smart contracts) that can be

run : these smart contracts are activated by a transaction sending ETH into it.
Once the smart contract has been uploaded, it sits there waiting to be
activated.

Apart from the fact whether an account stores code or not, the EVM treats the two
types equally, though. Every account has a persistent key-value store mapping 256-
bit words to 256-bit words called storage. Furthermore, every account has a balance

Page 19

https://github.com/ethereum/mist
https://github.com/ethereum/pyethapp
https://github.com/ethereum/cpp-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum

Blockchain 2.0 Jerome Kehrli / niceideas.ch

in Ether (in "Wei" to be exact) which can be modified by sending transactions that
include Ether.

The fact that Smart Contracts on Ethereum have their own account is important. As
a matter of fact, Smart Contracts instances can own ETH.

Gas and Gas Price

Gas is the internal pricing for running a transaction or contract in Ethereum. It's
purpose is to decouple the unit of Ether (ETH) and its market value from the unit to
measure computational use (gas).
A miner will use an amount of gas directly dependent on the amount of operations it
needs to execute to run a Smart Contract or support an API all. If need be, the price
of gas, i.e. the price of one unit of gas, can be increased or decreased independently
in order to avoid a situation in which an increase in the price of ETH would cause the
need to change all computing cost prices expressed in gas.

The usage of this more concrete notion of gas and using a gas price in ETH makes
the computation system independent from actual ETH market value.

The gas system is not very different from the use of Kw for measuring electricity
home use. One difference from actual energy market is that the originator of the
transaction sets the price of gas, to which the miner can or not accept.

The gas price is a value set by the creator of the transaction, who has to pay
[gas_price * gas] up front from the sending account. If some gas is left after the
execution, it is refunded in the same way.
This way, If ETH market value goes up, miners can agree on decreasing the gas price
to keep computing cost constant, and the other way around.

In addition, the gas price per transaction or contract is set up to deal with the
Turing Complete nature of Ethereum and its EVM (Ethereum Virtual Machine Code) -
the idea being to limit infinite loops. So for example 10 Szabo, or 0.00001 Ether or 1
Gas can execute a line of code or some command. If there is not enough Ether in the
account to perform the transaction or message then it is considered invalid. The idea
is to stop denial of service attacks from infinite loops, encourage efficiency in the
code - and to make an attacker pay for the resources they use, from bandwidth to
CPU calculations through storage.

The more complex the program one wants to execute, the more gas (and thus Ether)
one has to pay. For example if A wants to send B one Ether unit - there would be a
total cost of 1.00001 Ether to be paid by A. However if A wanted to form a contract
with B depending on the future price of Ether, there would be more lines of code
executable and more energy consumption placed on the distributed Ether network -
and therefore A would have to pay more than the 1 Gas done in the transaction.

Page 20

Blockchain 2.0 Jerome Kehrli / niceideas.ch

4.2 Ethereum and bitcoin differences

Bitcoin Ethereum

Applications
Digital Cash
Merchant Payments
Currency Trading

Smart Contracts Application
Platform

Ownership

No one owns Bitcoin.
Developer community and
mining pool consensus drives
roadmap

Ethereum Foundation develops
the platform and roadmap for
Ethereum

Blockchain

Blockchain is public and
decentralized.
New blocks mined every 10
minutes.
SHA-256 Proof of Work and
consensus verification.

Blockchain is public and
decentralized.
New blocks mined every 12
seconds.
Ethash proof of work and
consensus verification.
Uncle blocks accepted

Coins

15.3 million of a total possible
of 21 millions bitcoins have
been mined.
Current block reward of 25
bitcoins halving every 210'000
blocks

72 million ethers premined
5 ethers generated as block
reward, 4.3 for uncle blocks.
No cap; linear rising annual
ether limit.

Mining

Full and light nodes are
allowed.
Increasing barriers to CPU
mining.
Near centralized mining
industry with ASIC and FGPA
mining in large scale data
centers.

Current Frontier release requires
full nodes.
Ethash proof of work is ASIC
resistant and memory hard.
GPU friendly by design.

Trading
Bitcoins have a market cap of
about $6 billion and are trading
around $400 in Q1 2016.

Ether market cap approaching
$1 billion trading at $11 in
2016.
Second largest cryptocoin by
market cap.

Ethereum's block time is shorter

In Ethereum the time between blocks is around 14 seconds, compared with Bitcoin's
~10 minutes. This means that on average if one made a Bitcoin transaction and an
Ethereum transaction, the Ethereum transaction would be recorded into Ethereum's
blockchain faster than the Bitcoin transaction getting into Bitcoin's blockchain. One
could say Bitcoin writes to its database roughly every 10 minutes, whereas
Ethereum writes to its database roughly every 14 seconds.

Page 21

Blockchain 2.0 Jerome Kehrli / niceideas.ch

If one followed carefully the first article int his serie (see introduction above), one
knows that this has a consequence. A shorter time between blocks means much
more exctincts blocks and branches being created. A solution needed to be found to
make it still interesting to miner to try to mine blocks in Ethereum. See notion
of uncles below.

Ethereum has smaller blocks

In Bitcoin, the maximum block size is specified in bytes (currently 1 MB) whereas
Ethereum's block size is based on complexity of contracts being run - it's known as a
Gas limit per block, and the maximum can vary slightly from block to block.
Currently the maximum block size in Ethereum is around 1,500,000 Gas. Basic
transactions or payments of ETH from one account to another (ie not a smart
contract) have a complexity of 21,000 Gas so one can fit around 70 transactions into
a block (1,500,000 / 21,000). In Bitcoin one currently gets around 1,500-2,000
transactions in a block.
Data-wise currently most Ethereum blocks are under 2 KB in size.

ETH (Ether) issuance

Bitcoin is a cryptocurrency and payments network. Bitcoins are designed to be in
finite supply and deflationary. 21 million bitcoins will be generated through a halving
mining block reward. As on April 2016, 15.3 million bitcoins have been mined and
the block reward is 25 bitcoins. All bitcoins have been generated through mining.

Ether is the digital token used in Ethereum. Around 72 million ether were pre-mined
and distributed through a crowdfunding sale in exchange for bitcoins to launch
Ethereum platform development in 2014. After the Frontier platform went live, Ether
are generated as mining block rewards. As on April 2016, there are 78.7 million
ether in supply.

Five ether are generated in the form mining reward for new blocks, with five ether
per block and uncle blocks are compensated at 7/8th of the block reward or 4.375
ether with a maximum 2 uncles per block which implies a new block confirmation
can produce a maximum of 13.75 ether.

Page 22

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Let's just say that this is a lot more complicated than Bitcoin.

Block reward

Currently each block mined creates 5 fresh ETH. Doing the maths, if a block is mined
every 14 seconds, and there are 31.5m seconds in a year (365x24x60x60), this
means 2.25m blocks are mined per year.
2.25m blocks at 5 ETH per block = 11.3m ETH generated per year. This meets the
commitment of less than 18m ETH generated per year.

Uncle reward

Some blocks are mined a little late and don't form part of the main blockchain. In
Bitcoin these are called 'orphans' and are entirely discarded, but in Ethereum they
are called 'uncles' and can be referenced by later blocks. If uncles are referenced as
uncles by a later block, they create about 4.375 ETH for the miner of the uncle
(7/8th of the full 5 ETH reward). This is called the uncle reward. Currently around 500
uncles are created per day, adding an additional 2,000 ETH into circulation per day
(~0.7m ETH per year at this rate).

This achieves two important things:

Page 23

https://www.niceideas.ch/roller2/badtrash/mediaresource/51e4bc59-559e-42f8-a44b-bbf493f73431

Blockchain 2.0 Jerome Kehrli / niceideas.ch

• It incentivises miners to mine even though there is a high chance of creating a

non-mainchain block (the high speed of block creation results in more orphans
or uncles. Ethereum's 12 second block rate significantly increases the rate of
orphan blocks and forks)

• It increases the security of the blockchain by acknowledging the energy spent

creating the uncle blocks

Uncle referencing reward

And there's a bit more too: A miner who references an uncle also gets about 0.15
ETH per uncle (maximum 2 uncles).
This is called the GHOST protocol (Greedy Heaviest-Observed Sub-Tree).

4.3 Etherscript

Ethereum's main difference is a turing-complete programming language, sometimes
called EtherScript. Contracts live on the blockchain in an Ethereum-specific binary
format (Ethereum Virtual Machine [=EVM] bytecode). However, contracts are
typically written in some high level language such as solidity and then compiled into
byte code to be uploaded on the blockchain.

We will later see the example of a SmartContract written in Solidity but before I
would like to introduce Etherscripter available at http://etherscripter.com/.
Etherscripter is a Visual Smart Contrat Builder for Ethereum.
It works by providing the user with a Graphical User Interface (GUI) enabling him to
drag-and-drop logic elements on a board representing the Smart Contract Code

Let's look at an example. Imagine the following scenario :

• One has built a website and someone wants to buy it for $5000 but they can

only pay in March.

• In the traditional approach, one transfers control of the website and write

down what's been agreed on a piece of paper.

• March arrives and it seems there has been some confusion.

• You assumed the contract meant this March but they insist they meant next

March.

• Get ready to argue in court about the meaning of "March".

Using Ethereum, you might define the agreement in a form of EtherScript that's
readable to both humans and the computer network.
Using Etherscripter, the resulting script would look as follows:

Page 24

http://etherscripter.com/

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Reading agreements in this form could take some getting used to, but no more than
the legalese produced by today's contract lawyers. Fill-in-the-blank scripts would
likely become available for common uses. Specialists could craft very custom
agreements, as done by lawyers today.
The big advantage here again is that Smart Contract eliminate confusion and
remove all uncertainty over whether the other person will follow through. The script
both defines and enforces the agreement.

4.4 Hello World in Ethereum

We have seen above a first example of a Smart Contract implemented using
Etherscripter. This is interesting for the sake of introducing Smart Contract
programming logic. In real life Smart Contract are rather written in one of the
Ethereum scripting language, such as Solidity, Serpent or LLL.

We will see here a Hello World program developed using Solidity. Solidity is the
prefered language by many Smart Contract developers and IMHO a de-
facto standard.
I will present here the greeter program as presented in Ethereum Greeter.

The Greeter is an intelligent digital entity that lives on the blockchain and is able to
have conversations with anyone who interacts with it, based on its input.

Page 25

https://www.ethereum.org/greeter
https://www.niceideas.ch/roller2/badtrash/mediaresource/55de4e33-20e3-4a61-baeb-125a5ed08047

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Here is its code:

The greeter Smart Contract

/* A first abstraction representing a "mortal" entity */

contract mortal {

 /* Define variable owner of the type address*/

 address owner;

 /* this constructor is executed at initialization and sets the owner of the contract

 It is run only when the contract is created. */

 function mortal() {

 owner = msg.sender; /* msg is an implicit parameter */

 }

 /* Function to recover the funds on the contract */

 function kill() {

 /* Any "mortal" can be destroyed only by its owner */

 if (msg.sender == owner) {

 selfdestruct(owner);

 }

 }

}

/* Our greeter "Smart Contract" */

contract greeter is mortal {

 /* define variable greeting of the type string */

 string greeting;

 /* this runs when the contract is executed */

 function greeter(string _greeting) public {

 greeting = _greeting;

 }

 /* main function */

 function greet() constant returns (string) {

Page 26

Blockchain 2.0 Jerome Kehrli / niceideas.ch

 return greeting;

 }

}

One should notice that there are two different contracts in this code: "mortal" and
"greeter".
This is because Solidity has inheritance, meaning that one contract can inherit
characteristics of another.

The inherited characteristic "mortal" simply means that the greeter contract can be
killed by its owner, to clean up the blockchain and recover funds locked into it when
the contract is no longer needed. Contracts in ethereum are, by default, immortal
and have no owner, meaning that once deployed the author has no special
privileges anymore. One should consider this carefully when deploying
SmartContracts on the blockchain.

The reader might want to consult the Ethereum Greeter page to discover
about how to compile the greeter program using the SolC compiler.

Deploying on the Ethereum blockchain

The deployment and the initialization of a greeter Smart Contract (instance) is
performed using the following commands in the geth console:

/* compile greeter source */

var greeterCompiled = web3.eth.compile.solidity(...)

/* The greeting we will use in our greeter "instance" */

var _greeting = "Hello World!"

/* Define greeter Smart Contract (no instance, just definition) */

var greeterContract = web3.eth.contract (greeterCompiled.greeter.info.abiDefinition);

/* Deploy and instantiate greeter smart contract */

var greeter = greeterContract.new (_greeting,

 {from : web3.eth.accounts[0],

 data : greeterCompiled.greeter.code,

 gas : 300000

 },

 function(e, contract){ /* event listener callback */

 /* If no error occured ... */

Page 27

https://www.ethereum.org/greeter
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

Blockchain 2.0 Jerome Kehrli / niceideas.ch

 if (!e) {

 if (!contract.address) {

 console.log("Contract transaction send: TransactionHash: "

 + contract.transactionHash + " waiting to be mined...");

 } else {

 console.log("Contract mined! Address: " + contract.address);

 console.log(contract);

 }

 } else {

 /* If an error occured, log the error */

 console.log(contract);

 }

});

After typing these commands on the geth console, one should wait up to thirty
seconds before seeing a message like this:

Contract mined! address: 0xdaa24d02bad7e9d6a80106db164bad9399a0423e

This contract is estimated to need ~180 thousand gas to deploy, at the time of
writing, gas on the test net is priced at 20 gwei (equal to 0.00000002 ether) per unit
of gas.
Notice that the cost is not paid to the ethereum developers, instead it goes to the
Miners, those peers whose computers are working to find new blocks and keep the
network secure. Gas price is set by the market of the current supply and demand of
computation. If the gas prices are too high, you can become a miner and lower your
asking price.

Interacting with the greeter

In order to call the greeter bot, just type the following command in your terminal:

greeter.greet();

Since this call changes nothing on the blockchain, it returns instantly and without
any gas cost. You should see it return your greeting:

Page 28

Blockchain 2.0 Jerome Kehrli / niceideas.ch

'Hello World!'

In order for other people to interact with this greeter contract they need two things:

• the address where the contract is located and

• the ABI (Application Binary Interface) which is a sort of user manual,

describing the name of its functions and how to call them to your JavaScript
console.

In order to get each of them run these commands:

var ABI = greeterCompiled.greeter.info.abiDefinition;

var Address = greeter.address;

Recover these two variables ABI and Address and send them to whoever wants to
interact with the greeter Smart Contract.
Then, on his remote computer, the other user can get access to the greeter using
the following commands:

var greeter = eth.contract(ABI).at(Address);

That's it !

Clean-up

Whenever one has fun enough playing with the greeter, one should get rid of it by
making it unusable and thus cleaning the blockchain from abandoned live contracts

A transaction will need to be sent to the network and a fee to be paid for the
changes made to the blockchain after the code below is run. The self-destruct is
subsidized by the network so it will cost much less than a usual transaction.

greeter.kill.sendTransaction({from:eth.accounts[0]})

This can only be triggered by a transaction sent from the contracts owner. You can
verify that the deed is done simply seeing if this returns 0:

eth.getCode(greeter.address)

Page 29

Blockchain 2.0 Jerome Kehrli / niceideas.ch

4.5 Further Ethereum Examples

The example above is actually not very relevant since it doesn't make any usage of
what Ethereum is finally much more about : exchanging goods and money.
Describing more advanced example exceeds the scope of this article and I will write
another article when I come up myself with something relevant in the coming weeks.
In the meantime hereunder are 2 examples I think are worth looking at and that
make a great job in describing what Ethereum is able to do

Sub-currency example

The following contract will implement the simplest form of a cryptocurrency. It is
possible to generate coins out of thin air, but only the person that created the
contract will be able to do that (it is trivial to implement a different issuance
scheme). Furthermore, anyone can send coins to each other without any need for
registering with username and password - all you need is an Ethereum keypair.

See Sub-currency example on solidity

Democracy DAO

The example below creates a first decentralized autonomous organization, or DAO.

Think of the DAO as the constitution of a country, the executive branch of a
government or maybe like a robotic manager for an organization. The DAO receives
the money that your organization raises, keeps it safe and uses it to fund whatever
its members want by voting about it. The robot is incorruptible, will never defraud
the bank, never create secret plans, never use the money for anything other than
what its constituents voted on. The DAO will never disappear, never run away and
cannot be controlled by anyone other than its own citizens.

The token we distributed using the crowdsale is the only citizen document needed.
Anyone who holds any token is able to create and vote on proposals. Similar to being
a shareholder in a company, the token can be traded on the open market and the
vote is proportional to amounts of tokens the voter holds.

See The democracy DAO example

4.6 Private chains in Ethereum

Ethereum software enables a user to set up a "private" or "testnet" Ethereum chain
that is separate from the main Ethereum chain. This is useful for testing distributed
apps built on Ethereum without having to expose your apps or trials to the real
Ethereum network using real Ether. You either pre-generate or mine your own Ether
on your private Ethereum chain, so it is a much more cost effective way of trying out
Ethereum.

Page 30

https://github.com/ethereum/go-ethereum/wiki/Contract-Tutorial#democracy-dao
http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html#subcurrency-example

Blockchain 2.0 Jerome Kehrli / niceideas.ch

What are the components that tell geth that we want to use/create a private
Ethereum chain? The things that dictate a private Ethereum chain are:

• Custom Genesis File

• Custom Data Directory

• Custom NetworkID

• (Recommended) Disable Node Discovery

This is actually pretty straightforward and one should simply follow this tutorial

4.7 The DAO and The DAO Attack

The DAO is Code

The DAO was a digital decentralized autonomous organization and a form of
something in between aninvestor-directed venture capital fund and a crowfounding
platform.
The DAO had an objective to provide a new decentralized business model for
organizing both commercial and non-profit enterprises. It had no conventional
management structure or board of directors. The code of the DAO is open-source.

The DAO was stateless, and not tied to any particular nation state. As a result, many
questions of how government regulators would deal with a stateless fund were yet to
be dealt with.
The DAO itself was crowdfunded via a token sale in May 2016. It set the record for
the largest crowdfunding campaign in history.

The DAO was intended to operate as "a hub that disperses funds (currently in Ether,
the Ethereum value token) to projects." Investors received voting rights by means of
a digital share token; they voted on proposals that are submitted by "contractors"
and a group of volunteers called "curators" checked the identity of people
submitting proposals and made sure the projects were legal before "whitelisting"
them. The profits from the investments will then flow back to its stakeholders.
The DAO did not hold the money of investors; instead, the investors owned DAO
tokens that give them rights to vote on potential projects. Anyone could pull out
their funds until the time they first vote.
Its reliance on Ether has allowed people to send their money to it from anywhere in
the world without providing any identifying information

Page 31

https://souptacular.gitbooks.io/ethereum-tutorials-and-tips-by-hudson/content/private-chain.html
https://www.niceideas.ch/roller2/badtrash/mediaresource/210172c1-d8f8-4dff-b46e-7991880be12a

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Since 28 May 2016 the DAO tokens were tradable on various cryptocurrency
exchanges.

The DAO Attack

A paper published in May 2016 noted a number of security vulnerabilities associated
with The DAO, and recommended that investors in The DAO hold off from directing
The DAO to invest in projects until the problems had been resolved.
An Ethereum developer on Github pointed out a flaw relating to "recursive calls" in
early June that was picked up and blogged by Peter Vessenes, founder of the
Blockchain Foundation on June 9.
By June 14, fixes had been proposed and were awaiting approval by members of The
DAO.
On June 16 further attention was called to recursive call vulnerabilities by bloggers
affiliated with the IC3.
It's important to note that the vulnerabilities discussed here were not related to
the blochchain technology itself, but rather to the specific implementation of
The DAO Smart Contract.

On June 17, 2016, The DAO was subjected to a hack that deployed a combination of
vulnerabilities, including the one concerning recursive calls, and the hacker gained
control of 3.6 million Ether, around a third of the 11.5 million Ether that had been
committed to The DAO; the stolen Ether had a value of about $50M at the time of
the hack.

The hacked funds were put into an account likely subject to a 28 day holding period
under the terms of the Ethereum contract so were probably not actually gone;
members of The DAO and the Ethereum community debated what to do next, with
some calling the hack a valid but unethical maneuver and others calling for the
Ether to be re-appropriated and some calling for The DAO to be shut down

On the 20th July 2016, the Ethereum community decided to hard-fork the Ethereum
blockchain to restore virtually all funds to the original contract. This was
controversial, and led to a fork in Ethereum, where the original unforked blockchain
was maintained as Ethereum Classic, thus breaking Ethereum into two separate
active cryptocurrencies.

This fork of the blockchain is a tsunami. It really consisted in "rewriting history"
which is precisely what the blockchain should prevent and protect its users
from. This causes a lot of interesting questions :

Page 32

https://www.niceideas.ch/roller2/badtrash/mediaresource/3329934a-dabd-4575-a306-f1dc8d8429c4

Blockchain 2.0 Jerome Kehrli / niceideas.ch

• What is better ? A really unbreakable blockchain, making the above fork really

impossible but making it also impossible to recover from thief or badly
intentioned people exploiting vulnerabilities in a Smart Contract ?

• It raises the fact that one of the big challenges of the blockchain technology

is governance. I'll get back to this in a next article on this topic

In the fallout of the incident, much was made about how The DAO was "hacked".
Upon closer examination though, The DAO was not hacked at all. The attacker(s)
used two features of The DAO's specialised code to siphon out ether in amounts
small enough to not result in the destruction of their DAO tokens.

Moreover, it is perfectly legitimate to do whatever a smart contract's code permits,
even if this is beyond the original intention of those who wrote the code. Like all
technologies, "smart contracts" are dual use and might be used in ways that their
creators did not intend. The complexity of the technology only compounds this issue.

5. Smart Contracts use cases

I have identified a wide range of applications - ranging from smart health records to
pay-as-you-go insurance - that companies are either piloting right now or that are
being considered by discussions around the blockchain:

Industry Use Case What Smart Contracts can do

Financial
Services

Trade Clearing
and Settlement

Manage Approval workflows between
counterparties, calculate trade settlement
amounts, and transfer funds automatically.

Coupon
Payments

Automatically calculate and pay periodic
coupon payments and returns principal
upon bond expiration.

Commercial and
Retail banking

support mortgage lending, loans and
crowdfunding, etc.

Insurance Claim
Processing

Perform error checking, routing, and
approval workflows, and calculate payout
based on the type of claim and underlying
policy

Micro-insurance

Calculate and transfer micropayments
based on usage data from an Internet-of-
Things enabled device (example : pay-as-
you-go automotive insurance)

Cyber-insurance

Support insurance for the sharing
economy, autonomous object insurances,
peer-to-peer insurances, improve fraud
prevention, etc.

Corporate Support decentralized venture capital fund

Page 33

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Finance and
Funding

that relies on a wisdom-of-the-crowd voting
system to make investment decisions.

Life sciences
and Health
Care

Electronic
Medical Records

Provide transfer and/or access to metrical
health records upon multi-signature
approvals between patients and providers.

Population
Health Data
Access

Grant health researchers access to
personal health information;
micropayments are automatically
transferred to the patient for participation.

Personal health
tracking

Track patients' health-related actions
through IoT devices and automatically
generates reward baseds on specific
milestones.

Technology,
Media and
Telecom

Royalty
distribution

Calculate and distribute royalty payments
to artists and other associated parties
according to contracts.

Social networks
Decentralizing online communities with a
clever rating system, censorship and
moderation elimination

IT Services and
Web hosting

Eliminate risk of Denial Of Service
attacks by having the site stored
everywhere

Energy and
resources

Autonomous
electric vehicles
charging
stations

Process a deposit, enable the charging
station and return remaining fund when
complete .

Gaming

Casinos, online
gambling and
lotteries

Support provably fair casino style
gambling, eliminating cheating and fees.

Prediction
platforms

combine prediction market and algorithms
with power of decentralization to create
forcasting tools

Public Sector

Record-keeping /
company
registry

Update private company share registries
and capitalization table records, and
distribute shareholder communication.

Real-Estate /
Land registry

Maintain land registry, track changes of
ownership, update transactions register

Person registry
Track civil status of persons, but also
marriage contracts and wills, death
settlements, etc.

Cross-
industry

Supply chain
and trade
finance

Transfers payments upon (digital) multi-
signature approval for letters of credit and
issues port payments upon custody

Page 34

Blockchain 2.0 Jerome Kehrli / niceideas.ch

documentation changes for bills of lading

Product
Provenance /
Ownership and
History

Facilitates chain-of-custody processes for
products in the supply chain where the
party in custody is able to log evidence
about the custody.
(This is a key use case in so many fields :
luxury, gold and diamonds, medical goods,
wines, applications, etc.)

Peer to peer
transacting

Match parties and transfer payments
automatically for various peer-to-peer
applications: lending, insurance, energy,
credits, etc.

Voting

Validate voter criteria, log vote in the
blockchain, and initiate specific action as a
result of the majority vote. Also applies to
elections, in both public or private sectors.

Person
identification

Support trustworthy identification and
proof of identity, proving authenticity of
actions, reputation management, access
management.

Loyalty
programs

support tracking of product or service
usage (e.g Airline miles)

6. Issues and challenges

Smart contract technology is still in its early stages. One should track both
technology and business developments surrounding smart contracts. On the
technology side, certain advances will help broaden the applications and adoption of
smart contracts.

Challenges with current blockchain are as follows :

Scalability

Smart contract platforms are still considered unproven in terms of scalability. Think
of high frequency trading and the million of transaction on stock exchanges every
second, or the hundreds of thousands of facebook updates. If Big Data technologies
is at one side of the scale, then blockchain platforms at at the other side, for now.

The community is aware of this problem and is thinking of (more than working of)
several approaches such as sharding of computations or off-chain computations.
It remains to be seen whether or not any of these solutions can preserve the key
selling points of a public blockchain i.e. its trustful, permissionless and decentralized
nature.

Page 35

Blockchain 2.0 Jerome Kehrli / niceideas.ch

Access to real world information

As discussed above, because smart contracts can reference only information on the
blockchain, trustworthy data services-known as "oracles" - that can push information
to the blockchain will be needed.
Approaches for creating oracles are still emerging. While some initiatives are
promising, this is really a new field and where nothing clear and straightforward has
emerged now.
In addition, a lot of issues are not clearly addressed. For instance, what happens
when things change: what happens if information sources go away, if previously
independent sources merge, if new and better sources emerge?

Privacy

The code within smart contracts is visible to all parties within the network, which
may not be acceptable for some applications.
For instance, some retailers may not want their deals with their suppliers to be
public.

Latency and performance.

Blockchains suffer from high latency, given that time passes for each verified block
of transactions to be added to the ledger. For Ethereum this occurs approximately
every 17 seconds - a far cry from the milliseconds to which we are accustomed while
using non-blockchain databases.
Smart Contracts make things even slower and Ethereum's target of a new block
arriving every 12 seconds is quite ambitious and raises the risk of a node drowning
under a backlog of work

Permissioning.

While excitement for smart contracts is growing in the realm of both permission-less
and permissioned blockchains, the latter is likely to see faster adoption in industry,
given that complexities around trust, privacy, and scalability are more easily
resolved within a consortium of known parties.

Limits of application

There are often good reasons for optionality. In many contracts, clauses are written
into things on purpose to create a channel for arbitration. For example in a flat rental
agreement, wear-and-tear from tenants is acceptable, but major damage needs to
be repaired. How does code define these things? Force majeure is present in many
contracts to allow for wiggle-room for the parties involved. In a smart contract
environment, how does one party call that without abusing it or referring to a human
arbitrator ?

Page 36

Blockchain 2.0 Jerome Kehrli / niceideas.ch

In addition some business may simply not be modeled in a way that would enable it
to benefit from Smart Contracts or other blockchains.

Governance

If blockchains are to be sustainable in the long run, serious consideration of
appropriate governance mechanisms is needed.

A skewed distribution of mining power and crypto-currency holdings is combined
with pseudonymity of account holders and a strong incentive to game the system.
This has all the makings for deceptive, unaccountable, fraudulent, and self
interested decision making.
Until hard questions around governance of blockchains are asked, and solutions
implemented, we should brace ourselves for more incidents like that which has
befallen The DAO.

7. Conclusion

This (yet pretty long) article is really just an introduction to Smart Contracts and
blockchain 2.0 technologies. There is so much more to say on both Blockchain 2.0
initiatives in general and Ethereum specifically. I guess I'll cover some more aspects
following my discoveries when playing with Ethereum or discoveries I make on the
technology at large.

What I would like to add for now is that the blockchain technology, despite all the
hypes and all the investment in fancy startups around it, still need to mature and the
issues I described above are real challenges that need yet to be overcome.

Even if Ethereum is widely discussed nowadays, its only a year and a half old and
still in an initial stage. Smart Contracts application are being studied and almost
every week a new startup is announcing working on a new use case. But still, proven
businesses and wide adoption is still far ahead of us.

Having said that, this technology is a definitely a breakthrough and has an amazing
potential. Many technology experts said that its the most disruptive technology they
have seen since the apparition of the World Wide Web in the early 90's. And I believe
them.

(Again, one might want first article in this serie : Blockchain explained that provides
a pretty complete introduction to the initial bitcoin blockchain technology)

Also one might want to see part of this article as a slideshare presentation available
here :http://www.slideshare.net/JrmeKehrli/blockchain-20-69472625.

Page 37

http://www.intelligenthq.com/finance/12-bitcoin-and-blockchain-thoughts-and-quotes-you-need-to-read/
http://www.slideshare.net/JrmeKehrli/blockchain-20-69472625
https://www.niceideas.ch/roller2/badtrash/entry/blockchain-explained-beta

	Blockchain 2.0 Jerome Kehrli / niceideas.ch
	Blockchain 2.0 - From Bitcoin Transactions to Smart Contract applications
	1. Blockchain 2.0 and Smart Contracts
	1.1 From Transactions to Smart Contracts
	1.2 Smart Contracts Overview
	1.3 A little glimpse of Smart Contracts from finance perspective

	2. Smart Contracts Operation
	2.1 Smart Contracts Design
	2.2 Smart Contract and Oracles
	2.3 DAO

	3. Blockchain 2.0 projects
	3.1 New Blockchain technologies
	3.2 A focus on R3/Corda and Smart Contract Templates
	3.3 A first focus on Ethereum and Turing Complete Smart Contracts

	4. Ethereum in details
	4.1 Ethereum concepts
	4.2 Ethereum and bitcoin differences
	4.3 Etherscript
	4.4 Hello World in Ethereum
	4.5 Further Ethereum Examples
	4.6 Private chains in Ethereum
	4.7 The DAO and The DAO Attack

	5. Smart Contracts use cases
	6. Issues and challenges
	7. Conclusion

