
Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Periodic Table of Agile Principles and Practices
by Jerome Kehrli

Written in June, 2017

After writing my previous article, I wondered how I could represent on a single schematic all the 
Agile Principles and Practices from the methods I am following, XP, Scrum, Lean Startup, DevOps 
and others. 
I found that the approach I used in in a former schematic - a graph of relationship between 
practices - is not optimal. It already looks ugly with only a few practices and using the same 
approach for the whole set of them would make it nothing but a mess.

So I had to come up with something else, something better. 
Recently I fell by chance on the Periodic Table of the Elements... Long time no see... 
Remembering my physics lessons in University, I always loved that table. I remembered spending 
hours understanding the layout and admiring the beauty of its natural simplicity. 
So I had the idea of trying the same layout, not the same approach since both are not comparable, 
really only the same layout for Agile Principles and Practices.
The result is hereunder.

Table of Contents
Periodic Table of Agile Principles and Practices..........................................................................1
1. The Periodic Table of Agile Principles and Practices..............................................................2
2. Layout Principle.............................................................................................................................2
3. Remarks..........................................................................................................................................3
4. Principles and Practices................................................................................................................3

4.1 XP..............................................................................................................................................3
4.2 Scrum.......................................................................................................................................7
4.3 Product Development........................................................................................................11
4.4 DevOps..................................................................................................................................12
4.5 Lean Startup.........................................................................................................................16
4.6 Kanban...................................................................................................................................18
4.7 Kaizen....................................................................................................................................18
4.8 FDD (Feature Driven Development)................................................................................18
4.9 DAD........................................................................................................................................19

Page 1

https://www.niceideas.ch/roller2/badtrash/entry/agile-planning-tools-and-processes
https://en.wikipedia.org/wiki/Periodic_table
https://www.niceideas.ch/roller2/badtrash/entry/agile-planning-tools-and-processes#sec5


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

1. The Periodic Table of Agile Principles and Practices

The layout principle is and the description of the principles and practices is explained hereafter.

2. Layout Principle

• The origin Method such as XP, Scrum, DevOps, etc is indicated by the color as well as the 
name of the method on the top-right corner.

• The category, Principle or Practice is indicated by the shape: rectangle or round corners.

• The number represents the complexity expressed as the number of dependencies.

• The team or committee concerned with the principle or practice is indicated as note on the 
bottom-right corner.

• The horizontal dimension is related to the complexity. The more on the right is an element, 
the higher its complexity.

Page 2

https://www.niceideas.ch/roller2/badtrash/mediaresource/78e8967b-a55b-4639-9ae1-bad60b0befda


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

• The vertical dimension is related to classifying principles and practices more organization 
or more related to engineering, in specific layers related to the category or team they 
apply to.

This is best presented as follows:

3. Remarks

• Interestingly, but not surprisingly, scrum is really in the middle of the schematic, 
underlying the fact that it impacts as well development principles and the development 
team organization.

• XP is really everywhere down the line.

• Product Development is really about Product Management in the Agile world.

• DevOps is more related to development practices than everything else.

The next part of this article describes each and every principle and practice.

Page 3

https://www.niceideas.ch/roller2/badtrash/mediaresource/7a36d6d6-446b-4834-b087-57dbfe1c91a6


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

4. Principles and Practices

4.1 XP

Sn : Simple Design 
A simple design always takes less time to finish than a complex one. So 
always do the simplest thing that could possibly work next. If you find 
something that is complex replace it with something simple. It's always faster 
and cheaper to replace complex code now, before you waste a lot more time 
on it.

Depends on , , , , , 

Mt : Metaphor 
System Metaphor is itself a metaphor for a simple design with certain 
qualities. The most important quality is being able to explain the system 
design to new people without resorting to dumping huge documents on them. 
A design should have a structure that helps new people begin contributing 
quickly. The second quality is a design that makes naming classes and 
methods consistent.

Depends on , , , 

Td : TDD = Test Driven Development 
Test-driven development is a software development process that relies on 
the repetition of a very short development cycle: requirements are turned into 
very specific test cases, then the software is improved to pass the new tests, 
only. This is opposed to software development that allows software to be 
added that is not proven to meet requirements.

Depends on , , , 

Oc : Onsite Customer 
One of the few requirements of extreme programming (XP) is to have the 
customer available. Not only to help the development team, but to be a part 
of it as well. All phases of an XP project require communication with the 
customer, preferably face to face, on site. It's best to simply assign one or 
more customers to the development team.

Page 4

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Rf
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Su
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Mt
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Si
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sn
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Rf
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Wt
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sc


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Rf : Refactoring 
We computer programmers hold onto our software designs long after they 
have become unwieldy. We continue to use and reuse code that is no longer 
maintainable because it still works in some way and we are afraid to modify it. 
But is it really cost effective to do so? Extreme Programming (XP) takes the 
stance that it is not. When we remove redundancy, eliminate unused 
functionality, and rejuvenate obsolete designs we are refactoring. Refactoring 
throughout the entire project life cycle saves time and increases quality. 
Refactor mercilessly to keep the design simple as you go and to avoid 
needless clutter and complexity. Keep your code clean and concise so it is 
easier to understand, modify, and extend

Depends on , , , , , 

Cs : Coding Standards 
Code must be formatted to agreed coding standards. Coding standards keep 
the code consistent and easy for the entire team to read and refactor. Code 
that looks the same encourages collective ownership.

Su : Sustainable Pace 
To set your pace you need to take your iteration ends seriously. You want the 
most completed, tested, integrated, production ready software you can get 
each iteration. Incomplete or buggy software represents an unknown amount 
of future effort, so you can't measure it. If it looks like you will not be able to 
get everything finished by iteration end have an iteration planning meeting 
and re-scope the iteration to maximize your project velocity. Even if there is 
only one day left in the iteration it is better to get the entire team re-focused 
on a single completed task than many incomplete ones.

Wt : Whole Team 
All the contributors to an XP project sit together, members of a whole team. 
The team shares the project goals and the responsibility for achieving them. 
This team must include a business representative, the "Customer" who 
provides the requirements, sets the priorities, and steers the project

Page 5

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sn
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Mt
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Ci : Continuous Integration 
Developers should be integrating and commiting code into the code 
repository every few hours, when ever possible. In any case never hold onto 
changes for more than a day. Continuous integration often avoids diverging or 
fragmented development efforts, where developers are not communicating 
with each other about what can be re-used, or what could be shared. 
Everyone needs to work with the latest version. Changes should not be made 
to obsolete code causing integration headaches.

Depends on , , , 

Co : Collective Ownership 
Collective Ownership encourages everyone to contribute new ideas to all 
segments of the project. Any developer can change any line of code to add 
functionality, fix bugs, improve designs or refactor. No one person becomes a 
bottle neck for changes.

Cr : Code Review 
Code review is increasingly favored over strict Pair Programming as initially 
requires by the XP Method. The problem with Pair programming is that it 
cannot fitr everybody. 
Code reviews are considered important by many large-process gurus. They 
are intended to ensure conformance to standards, and more importantly, 
intended to ensure that the code is clear, efficient, works, and has QWAN. 
They also intended to help disseminate knowledge about the code to the rest 
of the team.

Depends on , , , 

Pg : Planning Game 
The main planning process within extreme programming is called the 
Planning Game. The game is a meeting that occurs once per iteration, typically 
once a week. The planning process is divided into two parts: Release Planning 
and Sprint Planning.

Depends on , , , 

Page 6

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Co
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sn
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Sr : Small Releases 
The development team needs to release iterative versions of the system to 
the customers often. Some teams deploy new software into production every 
day. At the very least you will want to get new software into production every 
week or two. At the end of every iteration you will have tested, working, 
production ready software to demonstrate to your customers. The decision to 
put it into production is theirs.

Sc : Source Code Management 
A component of software configuration management, version control, also 
known as revision control or source control, is the management of changes to 
documents, computer programs, large web sites, and other collections of 
information. Changes are usually identified by a number or letter code, 
termed the "revision number", "revision level", or simply "revision". For 
example, an initial set of files is "revision 1". When the first change is made, 
the resulting set is "revision 2", and so on. Each revision is associated with a 
timestamp and the person making the change. Revisions can be compared, 
restored, and with some types of files, merged.

Bs : Boyscout Rule 
The Boy Scouts have a rule: "Always leave the campground cleaner than you 
found it." If you find a mess on the ground, you clean it up regardless of who 
might have made the mess. You intentionally improve the environment for the 
next group of campers. Actually the original form of that rule, written by 
Robert Stephenson Smyth Baden-Powell, the father of scouting, was "Try and 
leave this world a little better than you found it." 
What if we followed a similar rule in our code: "Always check a module in 
cleaner than when you checked it out." No matter who the original author 
was, what if we always made some effort, no matter how small, to improve 
the module. What would be the result?

Depends on , , 

No : No premature optimization 
In Donald Knuth's paper "Structured Programming With GoTo Statements", he 
wrote: "Programmers waste enormous amounts of time thinking about, or 
worrying about, the speed of noncritical parts of their programs, and these 
attempts at efficiency actually have a strong negative impact when 
debugging and maintenance are considered. We should forget about small 
efficiencies, say about 97% of the time: premature optimization is the root of 
all evil. Yet we should not pass up our opportunities in that critical 3%."

Page 7

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Rf
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sn


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

At : Acceptance testing 
Acceptance tests are created from user stories. During an iteration the user 
stories selected during the iteration planning meeting will be translated into 
acceptance tests. The customer specifies scenarios to test when a user story 
has been correctly implemented. A story can have one or many acceptance 
tests, what ever it takes to ensure the functionality works.

Depends on , 

Ac : Automated Tests Coverage 
Code Coverage is a measurement of how many lines/blocks/arcs of your code 
are executed while the automated tests are running. 
Code coverage on every dimension should be above possible to 80% (the 
famous 80/20) rule and close to 100% (TDD).

Depends on , , 

4.2 Scrum

Sp : Sprint 
A Sprint is a time-box of one month or less during which a "Done", useable, 
and potentially releasable product Increment is created. Sprints best have 
consistent durations throughout a development effort. A new Sprint starts 
immediately after the conclusion of the previous Sprint.

Depends on , , , 

In : Product Increment (Shippable Product) 
In Scrum, the Development Team delivers each Sprint a Product Increment. 
The increment must consist of thoroughly tested code that has been built into 
an executable, and the user operation of the functionality is documented 
either in Help files or user documentation. These requirements are 
documented in the Definition of Done. 
If everything works fine and the Development Team has estimated well, the 
Product Increment includes all items, which were planned in the Sprint 
Backlog, tested and documented.

Depends on , , , , , , , 

Page 8

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sl
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sb
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pb
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cd
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ft
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pt
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ff


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Sl : Sprint Planning 
In Scrum, the sprint planning meeting is attended by the product owner, 
ScrumMaster and the entire Scrum team. Outside stakeholders may attend by 
invitation of the team, although this is rare in most companies. 
During the sprint planning meeting, the product owner describes the highest 
priority features to the team. The team asks enough questions that they can 
turn a high-level user story of the product backlog into the more detailed 
tasks of the sprint backlog.

Depends on , , , , 

So : Sprint Retrospective 
No matter how good a Scrum team is, there is always opportunity to improve. 
Although a good Scrum team will be constantly looking for improvement 
opportunities, the team should set aside a brief, dedicated period at the end of 
each sprint to deliberately reflect on how they are doing and to find ways to 
improve. This occurs during the sprint retrospective. 
The sprint retrospective is usually the last thing done in a sprint. Many teams 
will do it immediately after the sprint review. The entire team, including both 
the ScrumMaster and the product owner should participate. You can schedule 
a scrum retrospective for up to an hour, which is usually quite sufficient. 
However, occasionally a hot topic will arise or a team conflict will escalate 
and the retrospective could take significantly longer.

Depends on , 

Sb : Sprint Backlog 
The sprint backlog is a list of tasks identified by the Scrum team to be 
completed during the Scrum sprint. During the sprint planning meeting, the 
team selects some number of product backlog items, usually in the form of 
user stories, and identifies the tasks necessary to complete each user story. 
Most teams also estimate how many hours each task will take someone on the 
team to complete.

Depends on , 

Page 9

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pg
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Tv
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Us
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Kb
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Wh
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pb
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sp


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Pb : Product Backlog 
The agile product backlog in Scrum is a prioritized features list, containing 
short descriptions of all functionality desired in the product. When applying 
Scrum, it's not necessary to start a project with a lengthy, upfront effort to 
document all requirements. Typically, a Scrum team and its product owner 
begin by writing down everything they can think of for agile backlog 
priorization. This agile product backlog is almost always more than enough 
for a first sprint. The Scrum product backlog is then allowed to grow and 
change as more is learned about the product and its customers.

Depends on , 

Sd : Sprint Demo 
In Scrum, each sprint is required to deliver a potentially shippable product 
increment. This means that at the end of each sprint, the team has produced a 
coded, tested and usable piece of software. 
So at the end of each sprint, a sprint review meeting is held. During this 
meeting, the Scrum team shows what they accomplished during the sprint. 
Typically this takes the form of a demo of the new features.

Depends on 

Po : Product Owner 
The Scrum product owner is typically a project's key stakeholder. Part of the 
product owner responsibilities is to have a vision of what he or she wishes to 
build, and convey that vision to the scrum team. This is key to successfully 
starting any agile software development project. The agile product owner 
does this in part through the product backlog, which is a prioritized features 
list for the product. 
The product owner is commonly a lead user of the system or someone from 
marketing, product management or anyone with a solid understanding of 
users, the market place, the competition and of future trends for the domain 
or type of system being developed.

Depends on 

Page 10

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sg
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Ds : Daily Scrum 
In Scrum, on each day of a sprint, the team holds a daily scrum meeting called 
the "daily scrum." Meetings are typically held in the same location and at the 
same time each day. Ideally, a daily scrum meeting is held in the morning, as it 
helps set the context for the coming day's work. These scrum meetings are 
strictly time-boxed to 15 minutes. This keeps the discussion brisk but 
relevant.

Sm : Scrum Master 
What is a Scrum Master? The ScrumMaster is responsible for making sure a 
Scrum team lives by the values and practices of Scrum. The ScrumMaster is 
often considered a coach for the team, helping the team do the best work it 
possibly can. The ScrumMaster can also be thought of as a process owner for 
the team, creating a balance with the project's key stakeholder, who is 
referred to as the product owner. 
The ScrumMaster does anything possible to help the team perform at their 
highest level. This involves removing any impediments to progress, 
facilitating meetings, and doing things like working with the product owner to 
make sure the product backlog is in good shape and ready for the next sprint. 
The ScrumMaster role is commonly filled by a former project manager or a 
technical team leader but can be anyone.

Do: Definition of Done 
Definition of Done is a simple list of activities (writing code, coding comments, 
unit testing, integration testing, release notes, design documents, etc.) that 
add verifiable/demonstrable value to the product. Focusing on value-added 
steps allows the team to focus on what must be completed in order to build 
software while eliminating wasteful activities that only complicate software 
development efforts.

Depends on , , 

Page 11

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cs
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Pp : Planning Poker 
Planning Poker is an agile estimating and planning technique that is 
consensus based. To start a poker planning session, the product owner or 
customer reads an agile user story or describes a feature to the estimators. 
Each estimator is holding a deck of Planning Poker cards with values like 0, 1, 
2, 3, 5, 8, 13, 20, 40 and 100, which is the sequence we recommend. The 
values represent the number of story points, ideal days, or other units in 
which the team estimates. 
The estimators discuss the feature, asking questions of the product owner as 
needed. When the feature has been fully discussed, each estimator privately 
selects one card to represent his or her estimate. All cards are then revealed 
at the same time. 
If all estimators selected the same value, that becomes the estimate. If not, 
the estimators discuss their estimates. The high and low estimators should 
especially share their reasons. After further discussion, each estimator 
reselects an estimate card, and all cards are again revealed at the same time. 
The poker planning process is repeated until consensus is achieved or until the 
estimators decide that agile estimating and planning of a particular item 
needs to be deferred until additional information can be acquired.

Depends on 

Es : Estimations in Story Points 
Story points are a unit of measure for expressing an estimate of the overall 
effort that will be required to fully implement a product backlog item or any 
other piece of work. 
When we estimate with story points, we assign a point value to each item. The 
raw values we assign are unimportant. What matters are the relative values. A 
story that is assigned a 2 should be twice as much as a story that is assigned a 
1. It should also be two-thirds of a story that is estimated as 3 story points. 
Instead of assigning 1, 2 and 3, that team could instead have assigned 100, 
200 and 300. Or 1 million, 2 million and 3 million. It is the ratios that matter, 
not the actual numbers.

Page 12

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Es


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Tv : Team Velocity 
Velocity is simply a metric based on the completed items in a sprint by a 
single team. The metric is completely subjective to that specific team, and 
should never be extrapolated for any other comparison. 
Velocity is a reflective metric gathered from the sprint throughput of a stable 
team. Usually, a velocity metric is not considered valid until several sprints 
have been completed.

Depends on , , , 

4.3 Product Development

Us : User Stories 
In software development and product management, a user story is an 
informal, natural language description of one or more features of a software 
system. User stories are often written from the perspective of an end user or 
user of a system. They are often recorded on index cards, on Post-it notes, or 
in project management software. Depending on the project, user stories may 
be written by various stakeholders including clients, users, managers or 
development team members.

Depends on , 

Sg : Story Mapping 
Story mapping consists of ordering user stories along two independent 
dimensions. The "map" arranges user activities along the horizontal axis in 
rough order of priority (or "the order in which you would describe activities to 
explain the behaviour of the system"). Down the vertical axis, it represents 
increasing sophistication of the implementation. 
Given a story map so arranged, the first horizontal row represents a "walking 
skeleton", a barebones but usable version of the product. Working through 
successive rows fleshes out the product with additional functionality.

Depends on , , , , 

Page 13

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Es
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Su
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Us
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pv
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Cc : 3 C's - Card, conversation, confirmation 
"Card, Conversation, Confirmation"; this formula (from Ron Jeffries) captures 
the components of a User Story: 
a "Card" (or often a Post-It note), a physical token giving tangible and 
durable form to what would otherwise only be an abstraction; 
a "conversation" taking place at different time and places during a project 
between the various people concerned by a given feature of a software 
product: customers, users, developers, testers; this conversation is largely 
verbal but most often supplemented by documentation; 
the "confirmation", finally, the more formal the better, that the objectives the 
conversation revolved around have been reached.

Depends on 

Pv : Product Vision (elevator Pitch) 
Every Scrum project needs a product vision that acts as the project's true 
north, sets the direction and guides the Scrum team. It is the overarching goal 
everyone must share – Product Owner, ScrumMaster, team, management, 
customers and other stakeholders. As Ken Schwaber puts it: "The minimum 
plan necessary to start a Scrum project consists of a vision and a Product 
Backlog. The vision describes why the project is being undertaken and what 
the desired end state is."

Depends on 

Iv : INVEST 
The INVEST mnemonic for agile software projects was created by Bill Wake 
as a reminder of the characteristics of a good quality User Story: 
Independent: The User Story should be self-contained, in a way that there is 
no inherent dependency on another PBI; 
Negotiable: User Stories are no contracts and must leave space for discussion;
Valuable: A User Story must deliver value to the stakeholders; 
Estimatable: You must always be able to estimate the size of a User Story; 
Small: User Stories should not be so big as to become impossible to 
plan/task/prioritize with a certain level of accuracy; 
TestableThe User Story or its related description must provide the necessary 
information to make test development possible.

Depends on , , 

Page 14

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Us
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Us
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Po


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

4.4 DevOps

Ff : Feature Flipping 
Feature flipping is a technique in software development that attempts to 
provide an alternative to maintaining multiple source-code branches (known 
as feature branches), such that the feature can be tested, even before it is 
completed and ready for release. Feature flipping is used to hide, enable or 
disable the features, during run time. For example, during the development 
process, the developer can enable the feature for testing and disable it for 
remaining users

Depends on , 

Cd : Continuous Delivery 
Continuous delivery (CD) is a software engineering approach in which teams 
produce software in short cycles, ensuring that the software can be reliably 
released at any time. It aims at building, testing, and releasing software faster 
and more frequently. The approach helps reduce the cost, time, and risk of 
delivering changes by allowing for more incremental updates to applications 
in production. A straightforward and repeatable deployment process is 
important for continuous delivery.

Depends on , , , , , , , , , 

Ap : Automated Provisioning 
(Infrastructure as Code) Server provisioning is a set of actions to prepare a 
server with appropriate systems, data and software, and make it ready for 
network operation. Typical tasks when provisioning a server are: select a 
server from a pool of available servers, load the appropriate software 
(operating system, device drivers, middleware, and applications), 
appropriately customize and configure the system and the software to create 
or change a boot image for this server, and then change its parameters, such 
as IP address, IP Gateway to find associated network and storage resources 
(sometimes separated as resource provisioning) to audit the system 
With DevOps and Automated Provisioning, this whole configuration pipeline 
should be completely automated and executable in one-click, either 
automatically or on-demand.

Depends on , , 

Page 15

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Td
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ap
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#In
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sr
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ic
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Zd
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Vc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Bp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ar
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ic
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Vc


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Ic : Infrastructure Continuous Integration 
(Infrastructure as Code) Infrastructure Continuous Integration consists in 
leveraging Continuous Integration techniques to Infrastructure components. 
The continuous integration system is necessarily complex, spanning the 
development, test and staging environments. The continuous integration 
build should continuously build and test the provisioning, configuring and 
maintaining of the various infrastructure components.

Depends on , , 

Zd : Zero Downtime Deployments 
A Zero Downtime Deployment consists in redeploying (typically for a 
software upgrade) a production system without any downtime appearing to 
end users. To achieve such lofty goals, redundancy becomes a critical 
requirement at every level of your infrastructure. There are various techniques 
involved such a canari release or blue-green deployments.

Depends on , 

Cm : Configuration Management 
Configuration management is a class of tool supporting the automation of the 
configuration of a system, platform or software. It typically consists in 
define-with-code the various config elements that prepare a provisioned 
compute resource (like a server or AWS Ec2 instance) for service (installing 
software, setting up users, configuring services, placing files with template-
defined variables, defining external config resources like DNS records in a 
relevant zone).

Depends on 

Page 16

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ap
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Vc : Virtualization and Containers 
Hardware virtualization or platform virtualization refers to the creation of a 
virtual machine that acts like a real computer with an operating system. 
Software executed on these virtual machines is separated from the underlying 
hardware resources. 
Containerization - also called container-based virtualization and application 
containerization - is an OS-level virtualization method for deploying and 
running distributed applications without launching an entire VM for each 
application. Instead, multiple isolated systems, called containers, are run on a 
single control host and access a single kernel.

Bp : Build Pipelines 
Build pipelines are integrated views of downstream and upstream build jobs 
on a build server. Build pipelines are requires to automated all the various 
tasks towards continuous delivery such as : provisionning of the environment, 
build of the various software (with compilation, tests, packaging, etc.), 
deployment of the software components, applying configuration and testing 
the deployed platform.

Depends on , 

Ar : Automated Releases 
Release Automation consists in automating all the various steps requiered to 
release a new version of a software: building, testing, tagging, branching et 
depliying the binaries to a Binary management tools.

Depends on , 

St : Share the tools 
Share the tools is a DevOps principles aimed at leveraging both Dev and Ops 
tools and practices to the other side of the wall. Developers should leverage 
their automation and building tool to Infrastructure Automation, Provisioning 
and Testing. Ops should share the production monitoring concerns with 
developers.

Depends on 

Page 17

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ic
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ci
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Bp
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Bm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Os : Operators are stakeholders 
Operators as stakeholders is a DevOps principle stating that Operators 
should be considered the other users of the platform. They should be fully 
integrated in the Software Development Process. 
At specification time, operators should give their non-functional 
requirements just as business users give their functional requirement. Such 
non-functional requirements should be handled with same important and 
priority by the development team. 
At implementation time, operators should provide feedback and non-
functional tests specifications continuously just as business users provides 
feedback on functional features.

Depends on 

Or : Operators in Rituals 
Operators in Rituals is a DevOps principle stating that operators should be 
integrated in the Development Team Rituals such as the Sprint Planning and 
Sprint Retrospective and represent non-functional constraints during these 
rituals just as the Product Owner represents the functional interests.

Depends on , , , 

Bm : Binaries Management 
A binary repository manager is a software tool designed to optimize the 
download and storage of binary files used and produced in software 
development. It centralizes the management of all the binary artifacts 
generated and used by the organization to overcome the complexity arising 
from the diversity of binary artifact types, their position in the overall 
workflow and the dependencies between them. 
A binary repository is a software repository for packages, artifacts and their 
corresponding metadata. It can be used to store binary files produced by an 
organization itself, such as product releases and nightly product builds, or for 
third party binaries which must be treated differently for both technical and 
legal reasons.

Page 18

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sl
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Ds
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cd


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

4.5 Lean Startup

Fl : Feedback Loop 
The Build-Measure-Learn feedback loop is one of the central principles of 
Lean Startup Method. 
A startup is to find a successful revenue model that can be developed with 
further investment. Build-Measure-Learn is a framework for establishing – 
and continuously improving – the effectiveness of new products, services and 
ideas quickly and cost-effectively.
In practice, the model involves a cycle of creating and testing hypotheses by 
building something small for potential customers to try, measuring their 
reactions, and learning from the results.

Depends on , , , 

Ft : feature Teams 
A feature team is a long-lived, cross-functional, cross-component team that 
completes many end-to-end customer features—one by one. It is opposed 
to the traditional approach of Component Team where a team is specialized 
on an individual software components and maintains it over several projects 
at the same time. 
The Feature team approach seeks to avoid the bottlenecks usually appearing 
with Component Teams.

Fa : Fail Fast 
Fail fast means getting out of planning mode and into testing mode, 
eventually for every critical component of your model of change. Customer 
development is the process that embodies this principle and helps you 
determine which hypotheses to start with and which are the most critical for 
your new idea. 
An important goal of the philosophy is to cut losses when testing reveals 
something isn't working and quickly try something else, a concept known as 
pivoting.

Depends on 

Page 19

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Sd
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Cd
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Oc
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Mv : MVP 
In product development, the minimum viable product (MVP) is a product with 
just enough features to satisfy early customers, and to provide feedback for 
future development

Depends on , 

Gb : Get Out of the building 
If you are pre-Product/Market Fit and you aren't actually "Getting out of the 
Building" (actually talking to your customers), you aren't doing Customer 
Development, and your startup isn't a Lean Startup. 
Again: If you aren't actually talking to your customers, you aren't doing 
Customer Development.

Pt : Pizza Teams 
The idea of a "two pizza team" was coined by Jeff Bezo, founder of 
Amazon.com. If you can't feed a team with two pizzas, it's too large. That 
limits a task force to five to seven people, depending on their appetites." 
The underlying idea is that as a team's size grows, the amount of one-on-one 
communication channels tend to explode. 
Beyond ten, communication loses efficiency, cohesion diminishes, parasitism 
behaviors and power struggles appear, and the performance of the team 
decreases very rapidly with the number of members.

As : Actionable Metrics 
The only metrics that entrepreneurs should invest energy in collecting are 
those that help them make decisions. Actionable Metrics are opposed to 
Vanity Metrics. 
This is a precision of another fundamental Lean Startup practice wich is 
"Obsession of Measure" stating that everything should be measured and no 
decision should be taken in the company if it is not supported by a Key 
Process Indicator or a Key Risk Indicator.

Depends on , 

Page 20

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Bb : Build vs. Buy 
This is a fundamental principle of the Lean Startup and the web giants : favor 
as much as possible building your own software, your own feature instead of 
buying a third party software or library. 
When initiating a startup, having to pay fees to third party corporations before 
reaching a sustainable growth is suicidal.

Depends on , 

Ab : A/B Testing 
In marketing and business intelligence, A/B testing is a term for a controlled 
experiment with two variants, A and B. It can be considered as a form of 
statistical hypothesis testing with two variants leading to the technical term, 
two-sample hypothesis testing, used in the field of statistics

Depends on , 

4.6 Kanban

Ko : Kanban Board 
A Kanban board is a work and workflow visualization tool that enables you to 
optimize the flow of your work. Physical Kanban boards typically use sticky 
notes on a whiteboard to communicate status, progress, and issues. 
An agile corporation should use a KanBan board to monitor all its processes. 
A development team will typically use a Kanban board to monitor the Sprint 
backlog completion during a sprint.

4.7 Kaizen

Kb : Kaizen Burst 
The Kaizen burst is a specific Kaizen process integrated the the development 
rituals. In Agile Software Development, it is really integrated in the Sprint 
Retrospective. This idea is to identify in a visual way (with a post-it on a board 
for instance) the weaknesses or problems in the development practices or 
processes. These boxes are called Kaizen burst. 
Theses boxes are commented as actions are taken towards improvement and 
eventuelly removed when the weakness has been adressed or the problem 
solved.

Depends on 

Page 21

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Pm
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

Wh : 5 Why 
5 Whys is an iterative interrogative technique used to explore the cause-and-
effect relationships underlying a particular problem. 
The primary goal of the technique is to determine the root cause of a defect or 
problem by repeating the question "Why?" Each answer forms the basis of the 
next question. The "5" in the name derives from an anecdotal observation on 
the number of iterations needed to resolve the problem.

Depends on 

4.8 FDD (Feature Driven Development)

Si : SOLID principles 
In computer programming, the term SOLID is a mnemonic acronym for five 
design principles intended to make software designs more understandable, 
flexible and maintainable. The principles are a subset of many princples 
promoted by Robert C. Martin. 
Though they apply to any object-oriented design, the SOLID principles can 
also form a core philosophy for methodologies such as agile development or 
Adaptive Software Development.
The 5 principles are as follows: 
SRP : Single responsibility principle - a class should have only a single 
responsibility (i.e. only one potential change in the software's specification 
should be able to affect the specification of the class) 
OCP : Open/closed principle - "software entities ... should be open for 
extension, but closed for modification." 
LSP : Liskov substitution principle - "objects in a program should be 
replaceable with instances of their subtypes without altering the correctness 
of that program." 
ISP : Interface segregation principle - "many client-specific interfaces are 
better than one general-purpose interface." 
DIP : Dependency inversion principle - one should "depend upon 
abstractions, not concretions."

Depends on 

Page 22

https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#So
https://www.niceideas.ch/roller2/badtrash/entry/periodic-table-of-agile-principles#Am


Periodic Table of Agility  Jerome Kehrli / niceideas.ch

4.9 DAD

Pm : Product Management Committee 
The Product Management Committee is both a team and a ritual that enforces 
a smart approach to product management. 
Product Management consists in identifying and evolving your organization’s 
business vision; identifying and prioritizing potential products/solutions to 
support that vision; identifying, prioritizing, and allocating features to 
products under development; managing functional dependencies between 
products; and marketing those products to their potential customers. 
The Product Management Committee is the weekly (or bi-weekly) ritual 
enforcing and supporting this process with the required role attending the 
committee. It is led by the product Owner which has more a role of facilitator 
and arbitrator that a formal decision role. The Product Owner represents the 
PMC to the development team.

Am : Architecture Committee 
The Architecture Committee is responsible to analyze user stories and define 
Development Tasks. Every story should be specified, designed and discussed. 
Screen mockups if applicable should be drawn, acceptance criteria agreed, 
etc. 
Since the Architecture Committee is also responsible for estimating Stories, 
it's important that representatives of the Development Team, not only the 
Tech Leads and the Architects, but simple developers as well, take part in it.

Page 23


	Periodic Table of Agile Principles and Practices
	1. The Periodic Table of Agile Principles and Practices
	2. Layout Principle
	3. Remarks
	4. Principles and Practices
	4.1 XP
	4.2 Scrum
	4.3 Product Development
	4.4 DevOps
	4.5 Lean Startup
	4.6 Kanban
	4.7 Kaizen
	4.8 FDD (Feature Driven Development)
	4.9 DAD


