
Agile Planning Jerome Kehrli / niceideas.ch

Agile Planning : tools and processes
by Jerome Kehrli

Written in June, 2017

All the work on Agility in the Software Engineering Business in the past 20 years,
initiated by Kent Beck, Ward Cunningham and Ron Jeffries, comes from the finding
that traditional engineering methodologies apply only poorly to the Software
Engineering business.

If you think about it, we are building bridges from the early stages of the Roman
Empire, three thousand years ago. We are building heavy mechanical machinery for
almost three hundred years. But we are really writing software for only fifty years.
In addition, designing a bridge or a mechanical machine is a lot more concrete than
designing a Software. When an engineering team has to work on the very initial
stage of the design of a bridge or mechanical machine, everyone in the team can
picture the result in his mind in a few minutes and breaking it down to a set of single
Components can be done almost visually in one's mind.

A software, on the other hand, is a lot more abstract. This has the consequence that
a software is much harder to describe than any other engineering product which
leads to many levels of misunderstanding.

The waterfall model of Project Management in Software Engineering really originates
in the manufacturing and construction industries.
Unfortunately, for the reasons mentionned above, despite being so widely used in
the industry, it applies only pretty poorly to the Software Engineering business. Most
important problems it suffers from are as follows:

• Incomplete or moving specification: due to the abstract nature of

software, it's impossible for business experts and business analysts to get it
right the first time.

• The tunnel effect: we live in a very fast evolving world and businesses need

to adapt all the time. The software delivered after 2 years of heavy
development will fulfill (hardly, but let's admit it) the requirements that were
true two years ago, not anymore today.

• Drop of Quality to meet deadlines: An engineering project is always late,

always. Things are just a lot worst with software.

Page 1

https://www.niceideas.ch/roller2/badtrash/entry/funny-developer-tale
https://www.niceideas.ch/roller2/badtrash/entry/funny-developer-tale
https://www.niceideas.ch/roller2/badtrash/entry/agile-software-development-lessons-learned#sec11
https://www.niceideas.ch/roller2/badtrash/entry/agile-software-development-lessons-learned#sec11
https://en.wikipedia.org/wiki/Waterfall_model

Agile Planning Jerome Kehrli / niceideas.ch

• Heightened tensions between teams: The misunderstanding between

teams leads to tensions, and it most of the time turns pretty ugly pretty quick.

So again, some 20 years ago, Beck, Cunningham and Jeffries started to formalize
some of the practices they were successfully using to address the uncertainties, the
overwhelming abstraction and the misunderstandings inherent to software
development. They formalized it as the eXtreme Programmingmethodology.

A few years later, the same guys, with some other pretty well known Software
Engineers, such as Alistair Cockburn and Martin Fowler, gathered together in a resort
in Utah and wrote the Manifesto for Agile Software Development in which they
shared the essential principles and practices they were successfully using to address
problems with more traditional and heavyweight software development
methodologies.

Today, Agility is a lot of things and the set of principles of practices in the whole
Agile family is very large. Unfortunately, most of them require a lot of experience to
be understood and then applied successfully within an organization.

Unfortunately, the complexity of embracing a sound Agile Software Development
Methodology and the required level of maturity a team has to have to benefit from
its advantages is really completely underestimated.
I cannot remember the number of times I heard a team pretending it was an Agile
team because it was doing a Stand up in the morning and deployed Jenkins to run
the unit tests at every commit. But yeah, honestly I cannot blame them. It is actually
difficult to understand Agile Principles and Practices when one never suffered from
the very drawbacks and problems they are addressing.

I myself am not an agilist. Agility is not a passion, neither something that thrills me
nor something that I love studying in my free time. Agility is to me simply a
necessity. I discovered and applied Agile Principles and practices out of necessity
and urgency, to address specific issues and problems I was facing with the way my
teams were developing software.

The problem on which I am focusing on here is Planning. Waterfall and RUP focus a
lot on planning and are often mentioned to be superior to Agile methods when it
comes to forecasting and planning.
I believe that this is true when Agility is embraced only incompletely. As a matter of
fact, I believe that Agility leads to much better and much more reliable forecasts
than traditional methods mostly because:

• With Agility, it becomes easy to update and adapt Planning and forecasts to

always match the evolving reality and the changes in direction and priority.

Page 2

https://www.niceideas.ch/roller2/badtrash/entry/agile-landscape
https://en.wikipedia.org/wiki/Agile_software_development#The_Agile_Manifesto
https://en.wikipedia.org/wiki/Extreme_programming

Agile Planning Jerome Kehrli / niceideas.ch

• When embracing agility as a whole, the tools put in the hands of Managers

and Executive are first much simpler and second more accurate than
traditional planning tools.

In this report, I intend to present the fundamentals, the roles, the processes, the
rituals and the values that I believe a team would need to embrace to achieve
success down the line in Agile Software Development Management - Product
Management, Team Management and Project Management - with the ultimate goal
of making planning and forecasting as simple and efficient as it can be.
All of this is a reflection of the tools, principles and practices we have embraced or
are introducing in my current company.

Table of Contents
Agile Planning : tools and processes...1
1. Introduction..4
2. The Fundamentals..6

2.1 eXtreme Programming...6
2.2 Scrum...9
2.3 DevOps..11
2.4 Lean Startup..13
2.5 Visual Management and Kanban...16

2.5.1 Story Map..17
2.5.2 Product Backlog...19
2.5.3 Kanban Board..21
2.5.4 User Stories...22

3. Principles..23
3.1 The tools..23
3.2 The Organization..24

3.2.1 Required roles...24
3.2.2 Required Committees and teams..26

3.3 The Processes..28
3.3.1 Design Process..28
3.3.2 Estimation Process..30
3.3.3 Product Kanban Board Maintenance Process...34
3.3.4 Story Map and Backlog synchronization Process...38
3.3.5 Forecasting..40
3.3.6 Development process: Scrum..43

3.4 The Rituals...45
3.4.1 Product Management Committee..45
3.4.2 Architecture Committee..46
3.4.3 Sprint Management Committee...47
3.4.4 Development Team - Daily Scrum..48

3.5 The Values..48
4. Overview of the whole process...49
5. Return on Practices...50
6. Conclusion..52

Page 3

Agile Planning Jerome Kehrli / niceideas.ch

1. Introduction

As stated in my abstract above, embracing sound Agile principles and applying
relevant Agile practices is all but easy.
First, out of all the Agile methods available and described and the overwhelming set
of practices and principles, an organization needs to understand which makes sense
to it. Adopting a method, a set or principles or practices blindly, because the paper
said it was good, or because the Scrum Master believes it is state of the art makes
only little sense.
The set of methods described nowadays is pretty huge and unfortunately, each and
every of these practices make sense whenever a team, an organization or a whole
corporation suffers from a drawback or an issue it addresses or simply benefits from
its advantages.

The whole set of Agile methods along with their principles and practices are
brilliantly represented by Chris Web on the following infographic:

(Source : Christopher Webb - LAST Conference 2016 Agile Landscape -
https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-

presentation-v1)

Page 4

https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1
https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1
https://www.niceideas.ch/roller2/badtrash/mediaresource/d028b3c0-5332-4ae7-a91a-dc21b7551299

Agile Planning Jerome Kehrli / niceideas.ch

Junior teams should go with a base method that makes sense to it, such as Scrum or
Kanban while remembering that none of it makes sense without a strict
respect to the whole set of XP principles and practices.

More experienced teams will likely come up with their own methodology, cleverly
built from the principles and practices of several underlying methods.

Again, in my opinion XP is the most fundamental building block on which all
the rest is built, not a method among others.
I often read papers online presenting XP as one Agile Software Development Method
among others. My point of view is very different. I strongly believe - and experience
everyday - that XP proposes the fundamental principles and practices on which are
built all the other methods.
Without a thorough adoption of XP principles and practices, one cannot benefit from
the full advantages of Agility. In addition, some principles and practices proposes by
other methods such as DevOps, leverage on some XP principles and practices but
never voids them.

When explaining this, I like to recover this schema I wrote a few years ago when I
was doing consulting missions around Agility and Digital Transformation:

This reads as follows:

Page 5

https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Kanban_(development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://www.niceideas.ch/roller2/badtrash/mediaresource/61280dad-cbae-4bfe-bcaa-a75389e3b1e5

Agile Planning Jerome Kehrli / niceideas.ch

• Without a proper understanding and adoption of eXtreme Programming

values, principles and practices, moving towards Agile Software Development
will be difficult.

• Without Agility throughout the IT processes, both on the development side

(Agile) and on the Production side (DevOps), embracing Lean Startup practices
and raising Agility above the IT Department will be difficult.

• Without a sound understanding of the Lean Startup Philosophy and practices

and a company-wide Agile process (such as a company wide Kanban),
transforming the company to an Agile Corporation will be difficult.

• Finally, only Agile Corporations can really imagine successfully achieving a

Digital Transformation

But then again, referring to Chris Webb's Agile Landscape, picking up the practices
that make sense and have an added value in any context is the choice of every
organization. Every different mature agile organization will use a slightly different set
of practices than every other.

I will now be presenting the fundamental set of practices I deem important when it
comes to successfully embracing Agile Planning and Agile Software Development.

Page 6

Agile Planning Jerome Kehrli / niceideas.ch

2. The Fundamentals

The set of practices I deem essential to embrace Agile Planning comes from the
following methods: XP, Scrum, Kanban, DevOps, Lean Startup and a lot of Visual
Management tricks.

2.1 eXtreme Programming

eXtreme Programming (XP) is the most fundamental software development method
from the Agile tree< that focuses on the implementation of an application, without
neglecting the project management aspect. XP is suitable for small teams with
changing needs. XP pushes to extreme levels simple principles.

The eXtreme programming method was invented by Kent Beck, Ward Cunningham,
Ron Jeffries and Palleja Xavier during their work on the project C3. C3 was the
calculation of compensation project at Chrysler.
Kent Beck, project manager in March 1996, began to refine the development method
used on the project. It was officially born in October 1999 with Kent Beck's Extreme
Programming Explained book.

In the book Extreme Programming Explained, the method is defined as:

• An attempt to reconcile the human with productivity;

• A mechanism to facilitate social change;

• A way of improvement;

• A style of development;

• A discipline in the development of computer applications.

Its main goal is to reduce the costs of change. In traditional methods, needs are
defined and often fixed at the start of the IT project, which increases the subsequent
costs of modifications. XP is committed to making the project more flexible and open
to change by introducing core values, principles and practices:

The principles of this method are not new: they have existed in the software industry
for decades and in management methods for even longer. The originality of the
method is to push them to the extreme:

• Since the code review is a good practice, it will be done permanently (by a

binomial);

• Since the tests are useful, they will be done systematically before each

implementation;

Page 7

Agile Planning Jerome Kehrli / niceideas.ch

• Since the design is important, it will be done throughout the project

(refactoring);

• Since simplicity makes it possible to advance faster, we will always choose the

simplest solution;

• Since understanding is important, we will define and evolve metaphors

together;

• Since the integration of the modifications is crucial, we will do it several times

a day;

• Since the needs evolve rapidly, we will make cycles of development very rapid

to adapt to the change.

The practices listed by the eXtreme Programming method form the fundamental
Software Engineering Practices of Agility.
Interestingly, one cannot pick up a subset of these practices and believe that it
should work. Kent Beck uses the following schematic to illustrate how these
practices work together and depend on each others:

Page 8

https://www.niceideas.ch/roller2/badtrash/mediaresource/660a5518-bd24-4f68-b50d-2efc2790f248

Agile Planning Jerome Kehrli / niceideas.ch

All of this makes a lot of sense if you think of it: doing refactorings without TDD
would be suicidal, Continuous Integration without TDD as well, Testing without
simple design is complicated, Simple Design is enforced by TDD, etc.

2.2 Scrum

Scrum is a schematic organization of complex product development. It is defined by
its creators as an "iterative holistic framework that focuses on common goals by
delivering productive and creative products of the highest possible value"

This organizational scheme is based on the division of a project into time boxes,
called "sprints". A sprint can last between a few days and a month (with a
preference for two weeks).
Each sprint starts with an estimate followed by operational planning. The sprint ends
with a demonstration of what has been completed.
Before starting a new sprint, the team makes a retrospective. This technique
analyzes the progress of the completed sprint, in order to improve its practices
(Continuous Improvement / Kaizen).
The work flow of the development team is facilitated by its self-organization, so
there should be no formal Project Manager but a Team Leader instead with a
coaching role more than a management role.

The Scrum process can be represented as follows:

Page 9

https://www.niceideas.ch/roller2/badtrash/mediaresource/ffb1d3a9-7fef-42f5-9a73-f51d6f97d2f8

Agile Planning Jerome Kehrli / niceideas.ch

Some more information about scrum is available in a previous article here.

Working with Story Points

In waterfall, managers determine a team member's workload capacity in terms of
time. Managers ask selected developers to estimate how long they anticipate certain
tasks will take and then assign work based on that team member's total available
time. In waterfall, tests are done after coding by specific job titles rather than written
in conjunction with the code.
The downsides of waterfall are well known: work is always late, there are always
quality problems, some people are always waiting for other people, and there's
always a last minute crunch to meet the deadline. Scrum teams take a radically
different approach.

• First of all, entire Scrum teams, rather than individuals, take on the work. The

whole team is responsible for each Product Backlog Item. The whole team is
responsible for a tested product. There's no "my work" vs. "your work." So we
focus on collective effort per Product Backlog Item rather than individual effort
per task.

• Second, Scrum teams prefer to compare items to each other, or estimate

them in relative units rather than absolute time units. Ultimately this
produces better forecasts.

Page 10

https://www.niceideas.ch/roller2/badtrash/entry/agile-software-development-lessons-learned#sec13
https://www.niceideas.ch/roller2/badtrash/mediaresource/0d0237c0-20c6-47d2-8114-b85066c6e789

Agile Planning Jerome Kehrli / niceideas.ch

• Thirdly, Scrum teams break customer-visible requirements into the smallest

possible stories, reducing risk dramatically. When there's too much work for 7
people, we organize into feature teams to eliminate dependencies.

Planning poker, also called Scrum poker, is a consensus-based, gamified technique
for estimating, mostly used to estimate effort or relative size of development goals
in software development.
In planning poker, members of the group make estimates by playing numbered
cards face-down to the table, instead of speaking them aloud. The cards are
revealed, and the estimates are then discussed. By hiding the figures in this way,
the group can avoid the cognitive bias of anchoring, where the first number spoken
aloud sets a precedent for subsequent estimates.

The cards in the deck have numbers on them. A typical deck has cards showing the
Fibonacci sequence including a zero: 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89; other decks
use similar progressions.

The reason to use planning poker is to avoid the influence of the other participants.
If a number is spoken, it can sound like a suggestion and influence the other
participants' sizing. Planning poker should force people to think independently and
propose their numbers simultaneously. This is accomplished by requiring that all
team members disclose their estimates simultaneously. Individuals show their cards
at once, inspiring the term "planning poker."

In Scrum these numbers are called Story Points - or SP.

2.3 DevOps

DevOps is a methodology capturing the practices adopted from the very start by the
web giants who had a unique opportunity as well as a strong requirement to invent
new ways of working due to the very nature of their business: the need to evolve
their systems at an unprecedented pace as well as extend them and their business
sometimes on a daily basis.

Page 11

https://www.niceideas.ch/roller2/badtrash/mediaresource/54d9699f-11cf-40ee-bc89-f7ceeab60db2

Agile Planning Jerome Kehrli / niceideas.ch

DevOps is not a question of tools, or mastering chef or docker. DevOps is a
methodology, a set of principles and practices that help both developers and
operators reach their goals while maximizing value delivery to the customers or the
users as well as the quality of these deliverables.

The problem comes from the fact that developers and operators - while both
required by corporations with large IT departments - have very different objectives.

DevOps consists mostly in extending agile development practices by further
streamlining the movement of software change thru the build, validate, deploy and
delivery stages, while empowering cross-functional teams with full ownership of
software applications - from design thru production support.

Page 12

https://www.niceideas.ch/roller2/badtrash/mediaresource/472d552f-71ea-4640-a815-026e18cd865e

Agile Planning Jerome Kehrli / niceideas.ch

DevOps encourages communication, collaboration, integration and
automation among software developers and IT operators in order to improve both
the speed and quality of delivering software.

DevOps teams focus on standardizing development environments and automating
delivery processes to improve delivery predictability, efficiency, security and
maintainability. The DevOps ideals provide developers more control of the
production environment and a better understanding of the production infrastructure.

DevOps encourages empowering teams with the autonomy to build, validate, deliver
and support their own applications.

DevOps is a revolution that aims at addressing the wall of confusion between
development teams and operation teams in big corporations having large IT
departments where these roles are traditionally well separated and isolated.

So what are the core principles ?

Page 13

https://www.niceideas.ch/roller2/badtrash/mediaresource/77393bca-f284-443d-a48d-b1fadbc97789

Agile Planning Jerome Kehrli / niceideas.ch

I presented these principles and practices in details in my previous article dedicated
to devops..

2.4 Lean Startup

Some years ago, Eric Ries, Steve Blank and others initiated The Lean Startup
movement. The Lean Startup is a movement, an inspiration, a set of principles and
practices that any entrepreneur initiating a startup would be well advised to follow.

Page 14

https://www.niceideas.ch/roller2/badtrash/entry/devops-explained
https://www.niceideas.ch/roller2/badtrash/entry/devops-explained
https://www.niceideas.ch/roller2/badtrash/mediaresource/f37a1f42-86dd-4fef-a13e-e6b043c9c478

Agile Planning Jerome Kehrli / niceideas.ch

In my opinion, the most fundamental aspect of Lean Startup is the Build-Measure-
Learn loop.
The fundamental activity of a startup is to turn ideas into products, measure how
customers respond, and then learn whether to pivot or persevere. All successful
startup processes should be geared to accelerate that feedback loop.

Page 15

https://www.niceideas.ch/roller2/badtrash/mediaresource/8b002746-dd21-4668-970e-dafcaa864567
https://www.niceideas.ch/roller2/badtrash/mediaresource/4b4e8fe7-e841-46cc-996b-6b00df12b175

Agile Planning Jerome Kehrli / niceideas.ch

The five-part version of the Build-Measure-Learn schema helps us see that the real
intent of building is to test "ideas" - not just to build blindly without an objective.
The need for "data" indicates that after we measure our experiments we'll use the
data to further refine our learning. And the new learning will influence our next
ideas. So we can see that the goal of Build-Measure-Learn isn't just to build things,
the goal is to build things to validate or invalidate the initial idea.

The four steps to the Epiphany

Shortly put, Steve Blank proposes that companies need a Customer Development
process that complements, or even in large portions replaces, their Product
Development Process. The Customer Development process goes directly to the
theory of Product/Market Fit.
In "The four steps to the Epiphany", Steve Blank provides a roadmap for how to get
to Product/Market Fit.

The four stages the Customer Development Model are: customer discovery,
customer validation, customer creation, and company creation.

1. Customer discovery: understanding customer problems and needs

2. Customer validation: developing a sales model that can be replicated

3. Customer creation / Get new Customers: creating and driving end user
demand

4. Customer building / Company Creation: transitioning from learning to
executing

We can represent them as follows:

Page 16

https://en.wikipedia.org/wiki/Product/market_fit
https://www.niceideas.ch/roller2/badtrash/mediaresource/2f0ac2c3-13b4-4a24-a2fd-61ef32a66941

Agile Planning Jerome Kehrli / niceideas.ch

I added to the schema above the most essential principles and practices introduced
and discussed by the Lean Startup approach.

I discussed these principles and practices in length in a previous article on this blog.

2.5 Visual Management and Kanban

Visual Management is an English terminology that combines several Lean
management concepts centered on visual perception. The aim is to put the
information and its context in order to make the work and the decision-making
obvious.

Visual Management is an answer to the well known credo "You can't manage what
you can't see". It finds its root in Obeya War Rooms:

(Source : http://alexsibaja.blogspot.ch/2014/08/obeya-war-room-powerful-
visual.html)

Obeya (from Japanese "large room" or "war room") refers to a form of project
management used in many Asian companies, initially and including Toyota, and is a
component of lean manufacturing and in particular the Toyota Production System.
During the product and process development, all individuals involved in managerial
planning meet in a "great room" to speed communication and decision-making. This
is intended to reduce "departmental thinking" and improve on methods like email
and social networking. The Obeya can be understood as a team spirit improvement
tool at an administrative level.

Nowadays, visual management is very much linked to Lean Management and Lean
Startup, but IMHO it's really a field on its own. In the field of Agile Planning, I

Page 17

http://alexsibaja.blogspot.ch/2014/08/obeya-war-room-powerful-visual.html
http://alexsibaja.blogspot.ch/2014/08/obeya-war-room-powerful-visual.html
https://www.niceideas.ch/roller2/badtrash/entry/lean-startup-a-focus-on
https://www.niceideas.ch/roller2/badtrash/mediaresource/01215572-e424-4fdf-8715-5cd4af1997bf

Agile Planning Jerome Kehrli / niceideas.ch

believe that Visual Management with sound tools and approaches is not optional.
At the end of the day, as we ill see, a good Project Management tool is a tool than
enables anyone in the company to understand what is achievable in a given time or
what time is required to deliver a given scope within a few minutes. And nothing
competes with Visual Tools in this regards.

I will introduce here the fundamental tools I believe an Agile team should consider
when it comes to Visual Management:

2.5.1 Story Map

The purpose of the Story Map is that arranging user stories into a helpful shape - a
map - is usually deemed as most appropriate.
A Story Map is a visual management tool aimed at presenting the situation of the
Software or the features to be implemented in a clear and graphical way. A Story
Map is composed by user stories (see below).

A small story map may look like something like this:

At the top of the map are "big stories." We call them themes. A theme is sort of a
big thing that people do - something that has lots of steps, and doesn't always have
a precise workflow. A theme is a big category containing actual user stories grouped
in Epics.

Page 18

https://www.niceideas.ch/roller2/badtrash/mediaresource/d68d069a-2c6b-4771-b0d1-1f26fc3ec528

Agile Planning Jerome Kehrli / niceideas.ch

Epics are big user stories such as the one mentioned in example above. They usually
involve a lot of development and cannot be considered as is in an actual product
backlog. For this reason, Epics are split in a sub-set of stories, more precise and
concrete that are candidate to be put in an actual product backlog.

I presented more information on Story Maps in a previous article here.
For the moment, let's just remember that there is an important notion of priority on
the vertical scale: the lower a story, the lesser its priority.
There is also a les obvious notion of priority horizontally: stories on the left should be
implemented first since they have a greater value than the stories on the right, but
all of that of course with respect of the more important vertical priority.
Long story short: the development team needs to implement all the stories of a row,
from left to right, before it can consider the stories of the next row.

An pretty good and straightforward example of a Story Map related to an email
client application:

And a real world example built during an real life Workshop:

Page 19

https://www.niceideas.ch/roller2/badtrash/entry/agile-software-development-lessons-learned#sec32
https://www.niceideas.ch/roller2/badtrash/mediaresource/d68d069a-2c6b-4771-b0d1-1f26fc3ec528

Agile Planning Jerome Kehrli / niceideas.ch

(Copyright OCTO Technology / Unfortunately I haven't been able to recover the
source)

A story Map is usually a visual tool, laid down on the wall of a shared meeting room
or even the development team open-space. Distributed teams may consider digital
tools but a physical, real and visual map on a wall is way better.

2.5.2 Product Backlog

The product backlog is the tool used by the Development tool to track the tasks to
be implemented. These development tasks should be linked to a User Story on the
Story Map.
As such, the product backlog should be seen as a much more detailed and technical
version of the Story Map.

Page 20

https://www.niceideas.ch/roller2/badtrash/mediaresource/378db356-dcaf-44fb-b495-73571ecd8865

Agile Planning Jerome Kehrli / niceideas.ch

The product backlog shows the same releases than the Story Map. The development
tasks in the current sprints should have a more detailed form than the development
tasks not analyzed yet during Sprint Planning.
In a general way, the product Backlog should be kept synchronized with the Story
Map and the reverse is true as well. Every User Story on the Map is broken down in
development tasks in the Product Backlog and all tasks in the backlog should be
attached to a User Story on the Map.

Their difference is as follows:

• Story Map : The Story Map is a management tool. It is a visual tool used by

the Product Management Team to drive the high level development of the
product and to defined releases and priorities.

Page 21

https://www.niceideas.ch/roller2/badtrash/mediaresource/7ad71564-b3e2-4d28-b507-d2e2f8c624e8

Agile Planning Jerome Kehrli / niceideas.ch

• Product Backlog : The product Backlog is a technical project management

tool, not a visual management tool. Its is usually supported by a digital tool
(such as Jira or Redmine) and aims at organizing at a fine level the
development team activities.

Some important constraints should be noted right away:

• Each and every developer activity, not matter how quick and small, should be

well identified by a development task in the product backlog.

• Each and every development task should be linked to a User Story on the

Story Map. I cannot stress enough how much this is important.

2.5.3 Kanban Board

Kanban is model for introducing change through incremental improvements. One
can apply Kanban principles to any process one is already running.

In Kanban, one organizes the work on a Kanban board. The board has states as
columns, which every work item passes through - from left to right. One pull work
items along through the [in progress], [testing], [ready for release], and [released]
columns (examples). And you may have various swim lanes - horizontal "pipelines"
for different types of work.
The only management criteria introduced by Kanban is the so called "Work In
Progress" or WIP. By managing WIP you can optimize flow of work items. Besides
visualizing work on a Kanban board and monitoring WIP, nothing else needs to be
changed to get started with Kanban.

Page 22

https://www.niceideas.ch/roller2/badtrash/mediaresource/b42428b2-749a-4efa-850f-b5736da52171

Agile Planning Jerome Kehrli / niceideas.ch

Kanban boards can be mixed with Story Maps to follow the development of the tasks
scheduled for next releases as far as their delivery on the current development
version of the product.
In this case, the left-most column of the Kanban board becomes the Story Map
containing the Stories to be developed while the right-most column of the Kanban
board contains the User Stories identifying features already provided by the product.

I myself call such a mix of Story Map and Kanban a Product Kanban Board.

An real-world example of such a mix of Story Maps and Kanban boards could be as
follows:

2.5.4 User Stories

User stories are short, simple descriptions of a feature told from the perspective of
the person who desires the new capability, usually a user or customer of the system.

They typically follow a simple template:

As a <type of user>, I want <some goal> so that <some reason>.

User stories are often written on sticky notes and arranged on walls or tables to
facilitate planning and discussion.
As such, they strongly shift the focus from writing about features to discussing them.
In fact, these discussions are more important than whatever text is written.

Page 23

https://www.niceideas.ch/roller2/badtrash/mediaresource/3948a797-359c-45c7-ba70-5494574772bc
https://www.niceideas.ch/roller2/badtrash/mediaresource/35e0a8d6-521d-4775-818a-6df27e653f20

Agile Planning Jerome Kehrli / niceideas.ch

It's the product owner's responsibility to make sure a product backlog of agile user
stories exists, but that doesn't mean that the product owner is the one who writes
them. Over the course of a good agile project, you should expect to have user story
examples written by each team member.
Also, note that who writes a user story is far less important than who is involved in
the discussions of it.

Some example stories for different application contexts:

User Stories are used to track existing features as well as features to be developed
on a mix of Story Map and Kanban, the Product Kanban Board.

Page 24

https://www.niceideas.ch/roller2/badtrash/mediaresource/d40939a0-bf16-46eb-9c78-b0e922d62fd0

Agile Planning Jerome Kehrli / niceideas.ch

3. Principles

Having covered the fundamentals, we will now go through the principles required for
Agile Planning and see how the principles and practices introduced in the previous
section should be used to achieve reliable forecasts and planning with Agile
methodologies.

We should now discover:

• The tools, mostly visual management tools that the organization should

adopt.

• The Organization to be put in place with required roles and committees.

• The processes that should be respected and that will lead to accurate

estimations and forecasts.

• The Rituals supporting the processes.

• The Values the team has to embrace to successfully run the processes and

deploy the required practices.

3.1 The tools

The tools that the organization should adopt are as follows:

Page 25

Agile Planning Jerome Kehrli / niceideas.ch

I believe that I introduced these tools in length in the section 2.5 Visual Management
and Kanban so I won't be adding a lot. We will see in the next section related to
processes how these tools are used and how they complement each other by
addressing different needs.

3.2 The Organization

The organization to put in place consists in identifying roles as well as committees
and teams.

3.2.1 Required roles

The required roles are as follows:

Page 26

https://www.niceideas.ch/roller2/badtrash/mediaresource/7cc8dcbc-ca33-4f38-bc26-2a3100a9b5c2
https://www.niceideas.ch/roller2/badtrash/mediaresource/8554fd26-4b6d-46fc-956b-7fba19b6135f

Agile Planning Jerome Kehrli / niceideas.ch

• Team Leader : The Team Leader animates the Team rituals (such as Sprint

Planning, Sprint Retrospective, Daily scrum) and acts as a coach and a mentor
to the development team. He is not a manager, he is a leader (Lead by
Example, Management 3.0, etc.). He also represents the development team in
other rituals (PMC).
At the end of the day, the Team Leader should not be made responsible for
neither the team successes nor the team failures, the whole team should be
accountable for this.
If the team leader is solely responsible for the Team's performance, then we
will be tempted to shortcut quality or mess some rituals to speed up the pace
and successfully respect some artificial deadline or else. When that is the
case, the team requires a Scrum Master who should guarantee the Scrum
rituals and processes are well respected.
In my opinion it makes a lot more sense to avoid such situation by making
sure everyone in the team is accountable for the team performance and also
responsible for the proper respect of the defined Agile processes and rituals. In
this case, the Team Leader becomes an arbitrator, a facilitator, a coach and a
support, not a manager. At the end of the day, management is too important
to be left to managers ;-)

• Architect : The Architect (or architects) should be the most experienced

developer(s), the one(s) with the biggest technical and functional knowledge.
There can be several architects, a lead architect, a technical architect, etc.
This doesn't really matter.
The important thing is that the architect should be entitled to take architecture
decision by still referring to the whole team as much as possible. The architect
leads the Architecture Committee where architecture decisions are taken.
The architect, with the help of the tech leads, provides guidance and support
to developers. he is also responsible to check the Code Quality, leading the
code reviews, and ensure the sticking to Code conventions, etc.

• Tech Leads and Developers : The tech leads and developers form the core

of the development team, they eventually develop the software.
Tech Leads are coaches and supports to developers and represent them in the
Architecture Committee.

• Product Owner : The product Owner represents the stakeholders and drives

priorities in good understanding with the market and customer needs. He is
not a leader, he is an arbitrator and acts as the bridge between the business
requirements and the development team.

Page 27

Agile Planning Jerome Kehrli / niceideas.ch

I can only recommend the reader to watch the magnificent video "Agile
Product Ownership in a Nutshell" from Henrik Kniberg.

• Business representatives : Business representatives (sales, customers,

etc.) have to be involved in the Product Management Committee by the
product Owner whenever required.

Why bother ?

Roles are required mostly for two reasons : efficiency and focus:

• Efficiency: roles are required to avoid having the whole organization meeting

all the time at every meeting for every possible concern.

• Focus: every role owner should acts as required by his role and put himself in

the right mindset for every ritual. Rituals are eventually a role playing game.
Roles are not functions ! We are not speaking hierarchy here, it's more a
question of role play : when someone is assigned a role, his objective is to act
and challenge the matters being discussed in correspondence with his role !

As an important note, roles can well be shared. A same co-worker can have multiple
roles if required, even though it would be better to avoid this.

3.2.2 Required Committees and teams

Required committees and teams are as follows:

Page 28

https://www.youtube.com/watch?v=vkYEqz_MA5Y
https://www.youtube.com/watch?v=vkYEqz_MA5Y
https://www.niceideas.ch/roller2/badtrash/mediaresource/71b8bcdd-d97a-46bd-a1c9-4942874f6481

Agile Planning Jerome Kehrli / niceideas.ch

• Development team : The development team is responsible to develop the

software. It is composed by Developers, Tech Leads, Architects and the Team
Leader. At the end of the day, they're all developers and even the Team
Leader should be able to spend a ratio of his time developing the Software
(Lead by Example). Its essential ritual is the daily scrum every day.

• Product Management Committee : The Product Management Committee -

or PMC - is composed by the Development Team Leader, The Architect(s) and
The Product Owner. The Product Owner should convoke business
representatives as required. The PMC is responsible for identifying the new
features to be added to the product and prioritize them. It should take place
every week or every two weeks at most.
The PMC identifies new features as User Stories and Uses the Story Map to
track them and prioritize them. Priorities are redefined and adapted as Stories
Estimations (in Story Points) are refined. This process is explained later.
Priorities should be set in respect to the value and the cost (in SP) of each
and every story.

• Architecture Committee : The Architecture Committee is composed by the

Team Leader, The Architect(s), The Product Owner, the Tech Leads and
representatives of the Development team.
The Architecture Committee is responsible to analyze user stories and define
Development Tasks. Every story should be specified, designed and discussed.
Screen mockups if applicable should be drawn, acceptance criteria agreed,
etc.
Since the Architecture Committee is also responsible for estimating Stories,
it's important that representatives of the Development Team, not only the Tech
Leads and the Architects, but simple developers as well, take part in it. Ideally,
there should be a rotation and at every meeting a different couple of
developers should be convoked. This is required to have everyone agreeing on
the estimations.
The Architecture Committee should take place every week or every two weeks
at most as well and ideally not long after the PMC.

• Sprint Management Committee : The Sprint Management Committee is

basically composed by the Development Team plus the Product Owner.
During Sprint Planning, the Sprint Management Committee discusses the
implementation concerns of the tasks specified by the Architecture Committee
and challenge the estimations if required. The Development Tasks defined by
the Architecture Committee are detailed as much as possible.
During Sprint retrospective, the Sprint Management Committee discussed the

Page 29

Agile Planning Jerome Kehrli / niceideas.ch

issues and drawbacks encountered during former sprint and agrees on an
action plan to address them.

3.3 The Processes

I will be presenting now the various processes that are required to achieve the
ultimate goal of Agile Planning : reliable forecasts and planning.

3.3.1 Design Process

The Design process consists in breaking a User Story identified by the PMC into
Development tasks that developers can understand and work on.
It can be illustrated as follows:

A. Identification of User Stories

The PMC produces a User Story laid down on the Story Map.

B. From User Stories to Development Stories

The Architecture Committee analyzes every new story and for each of them it
creates a Development Storyon the Product Backlog.

Page 30

https://www.niceideas.ch/roller2/badtrash/mediaresource/623b344c-56ab-4842-9706-413f07534944

Agile Planning Jerome Kehrli / niceideas.ch

Such a Development Story is not anymore a simple post-it in a Story Map, it is a
digital User story created in the backlog management tool such as Jira or Redmine.
The Development Story is specified and design. It should contain:

• The initial user story from the Story Map as it was expressed at that time.

• A complete description of the purpose and intents of the feature.

• A complete description of the expected behaviour from all perspectives: user,

system, etc.

• Mock-ups of screens and front-end behaviours as well as validations to be

performed on the front-end.

• A precise and exhaustive list and description of all business rules.

• A list and description of the data to be manipulated.

• Several examples of source data or actions and expected results.

• Acceptance criteria (functional and non-functional) and a complete testing

procedure.

C. From Development Stories to Development Tasks

The Architecture Committee also breaks the Development Story down in
several Development Tasks.
Development tasks should be split by logical or functional units or layers. For
instance, one task could be related to the GUI while another one could be related to
the database changes, etc. But if it is possible, it is always better not to split them
by layer but rather vertically by sub-feature.
What should never be done is splitting a Story in tasks by the type of job, for
instance development, unit test, integration tests. That should never ever be done. A
developer, or a couple of developers should always implement a sub-feature
entirely, with all the required tests, functional tests, migration scripts, etc.

D. From Development Tasks to Detailed Tasks

The Sprint Management Committee, during Sprint Planning recovers all these
Development Tasks and analyzes them further.

The questions to be answered at this time are:

• Are all the information provided by the Architecture Committee clear enough

or are some precisions required ?

• Is there any unforeseen impact on other parts of the software ?

Page 31

Agile Planning Jerome Kehrli / niceideas.ch

• Is there any tool or specific environment setup or configuration required to

implement these tasks ?

• etc.

Specifically the developers that were not present at Architecture Committee when a
task has been designed should challenge it and make sure they understand not only
what need to be done but really also how to do it precisely.
At this stage, the new findings should lead to a refinement of the initial estimations
agreed by the Architecture Committee.

3.3.2 Estimation Process

What we want eventually, is a Story Map containing estimations for all the Stories
that have been analyzed by the Architecture Committee.
The result we want to achieve here can be represented as follows:

Page 32

https://www.niceideas.ch/roller2/badtrash/mediaresource/c1d1253c-b607-48c6-8940-d8a9197f42c4

Agile Planning Jerome Kehrli / niceideas.ch

Each and every story that has been broken down by the Architecture Committee and
created in the Product Backlog is clearly identified: it has an estimation expressed as
a total number of Story Points.
That number corresponds to the total of the estimations in SP of the individual
Development Tasks underneath.

A. Initial Estimations

At this stage, The Architecture Committee is in charge of the Initial Estimations.
After a Story has been broken down in tasks, each and every of these tasks is
estimated by the Committee using the Planning Poker approach.
The sum of the estimations of every individual tasks is reported on both the
Development Story (Product Backlog) and the User Story (Story Map):

B. Refined Estimations

When the Sprint Management Committee recovers the Development Tasks to
refine them, there might be new impacts discovered, new unforeseen refactorings
required, etc.

The Sprint Management Committee should challenge the initial estimations with
their new findings and adapt the estimations accordingly.
Again, these new Refined Estimations should be reported on both the Development
Story (Product Backlog) and the User Story (Story Map):

Page 33

https://www.niceideas.ch/roller2/badtrash/mediaresource/3d966d2e-c07e-4f8a-96c0-d7215235cff0

Agile Planning Jerome Kehrli / niceideas.ch

C. Final Estimations

Eventually, during the sprint, it can happen that a developer discovers that a task
will take a bigger time than expected, or, in the contrary, a much shorter time.
Reporting such changes in estimations at this very late stage is maybe not important
for Scrum, since the sprint is already filled, but it's important for both the Sprint
Management Committee and the Architecture Committee to be notified about them
in order to improve the way they do estimations.
As part of Continuous Improvement (Kaizen), the Architecture Committee needs to
identify where the gap comes from and try to have more accurate estimations next
time.

So even at this stage, when a developer discovers gaps or shortcut, it's important
that any impact in terms of estimation is reported as far as to the Story Map:

Page 34

https://www.niceideas.ch/roller2/badtrash/mediaresource/dc66f36c-1f9c-4975-8b08-37720b496b3d

Agile Planning Jerome Kehrli / niceideas.ch

Why bother ?

The management tool is the story map, not the product backlog. The product
backlog is a technical tool to organize the development activities. It's not a
management tool.

The Product Management Committee should be able to decide about priorities using
solely the Story Map. In addition, it should be possible to forecast a delivery date
using solely the Story Map.
For this reason, the Story Map should contain as up to date as possible estimations.

Everyone in the company should be able to take is little calculator, go in front of the
story map and know precisely when a task will be delivered.
We'll see how soon !

What about updating estimations after the task has been completed and
we know how much time we spent on it ?

One needs to understand what we're trying to achieve here.

We're trying to continuously improve our ability to come up with accurate and
reliable estimations based on the information we have. When we estimate tasks at
ARCHCOM or Sprint Planning, we only have analysis information at our disposal, we
have no clue about any post-implementation information such as the actual time
that will be spent on the task.
As such, while it is very important to improve our ability to estimate using analysis
information (as done at ARCHCOM), it makes no sense to update estimations after
implementation since actual implementation time is an information we will never
have before implementing the task.

Page 35

https://www.niceideas.ch/roller2/badtrash/mediaresource/6159e36f-dcd8-4d03-af65-419e562badfe

Agile Planning Jerome Kehrli / niceideas.ch

Again, we want to improve our ability to estimate using the information we have.
And actual implementation time is an information we don't have so it's useless in
regards to improving the estimation process and as such doesn't trigger any
estimation update.

In addition, the estimation process is a comparison game, not an evaluation game
(or less). An Estimation in SP should have no clear relationship with actual
implementation time, for many reasons, among them the fact the different
developers have different capacity. A 10 SP task is always a 10 SP task, for every
developer. But it may well represent 4 days of work for a junior developer and 2 days
of work for a senior developer.
This aspect is a very important reason behind the rationality to think in terms of SP
instead of Man/Days. And of course SP should be a measure of the whole team
capacity, not individuals.

This is why we don't bother updating estimations after actual implementation.
Nevertheless, we should still use that knowledge to improve our estimations, but
actually trying to update the estimation in SP makes no sense.

3.3.3 Product Kanban Board Maintenance Process

Maintaining the Product Kanban Board (Mix of Story Map and Kanban Board) as up to
date as possible with latest activities of the development team as well as the latest
estimations is important.
Again, The Product Kanban Board is the only tool that should be required by the
Product Management Committee to come up with estimations and forecasts.

We will now see how this Product Kanban Board should be maintained throughout
the sprints and how it is used.

A. Initial Stage: before the first sprint of the nest release

We start with a Board of the following shape:

Page 36

Agile Planning Jerome Kehrli / niceideas.ch

The boxes in blue indicate how a User Story is moved across the board when it
advances in the analysis and development process:

• First, when the Architecture Committee has done analyzing and breaking down

the Story, the estimation it came up with is reported on the User Story in the
violet pellet.

• Then, A Story is moved to Implementation / Doing when a first of its

development tasks is being implemented in the current sprint

• It is moved to Implementation / Done when the last of its development

tasks is done being implemented (meaning completely done : with automated
tests, IT tests, etc. At this stage it's simply waiting the next continuous deliver
build to be available on Test environment for acceptance tests.

• When the Continuous Delivery build has been executed, the Story is moved to

Testing.

• When the product Owner either tested the Story (or delegated such tests) and

accepts the results, the Story is moved to Done

The Story Map on the left is a pretty standard Story Map, where releases are
identified.

The Story Map on the right, on the other hand, drops the notion of releases
completely. It identifies the features as they are available as a whole in the current

Page 37

https://www.niceideas.ch/roller2/badtrash/mediaresource/a4abc1b6-d804-4a30-95ab-be9ac45ae7b2

Agile Planning Jerome Kehrli / niceideas.ch

development version of the product, regardless of both past releases and releases to
come.
A story identifying a new feature is simply added to it to capture the fact that the
feature is now available on the development version.
On the other hand, a story identifying a modification of an existing feature should be
merged with the original story, potentially leading to a new story, corresponding
to the new way of expressing the feature.

B. During the first sprint

During the first sprint after this initial stage, the Kanban board in the middle
identifies the Stories that are being worked on and their status:

C. During the second sprint

After first sprint, developed stories are put on the Story Map on the right and a next
set of Stories are being developed:

Page 38

https://www.niceideas.ch/roller2/badtrash/mediaresource/4e2f2347-c769-4552-a72f-eaca4f9000c4

Agile Planning Jerome Kehrli / niceideas.ch

D. After the first release

After the first release, we can see that all the tasks from the first release of the Story
Map on the left have been moved to the Story Map on the right.
The Story Map on the left is adapted and the next releases are shifted up.

Notes:

• Actual releases will differ: we can release potentially at every end of Sprint.

Releases identified on the Story Map on the left will likely be broken down in
smaller releases.

Page 39

https://www.niceideas.ch/roller2/badtrash/mediaresource/315440d4-522c-49ca-b048-224d13efd5fc
https://www.niceideas.ch/roller2/badtrash/mediaresource/655b8fc2-cb7d-49df-8097-cd8894671257

Agile Planning Jerome Kehrli / niceideas.ch

• Again, one should embrace Continuous Delivery: The development Team

releases at every end of sprint. Making it a customer release is a Product
Management Decision

• One should consider feature flipping in order not to compromise a potential

release with a story that would not have been completely implemented in one
sprint.

E. No notion of release in Done (Right Story Map)

The Story Map on the right shouldn't have any notion of releases. It represents the
Product as is the current development version and it makes no sense anymore
remembering there which task has been developed in which release.

Also, User stories on the right may need to be merged whenever they relate to the
same feature.

3.3.4 Story Map and Backlog synchronization Process

The priorities of the Development Tasks on the Product Backlog should match and
follow the priorities of the User Stories on the Story Map.
When a story priority changes, the priorities of the corresponding Development
Tasks on the Product Backlog should be changed in order to reflect the new priority
of the User Story.

The principle is as follows:

Page 40

https://www.niceideas.ch/roller2/badtrash/entry/devops-explained#sec35
https://www.niceideas.ch/roller2/badtrash/mediaresource/e521062a-cf09-4d17-b44f-70fcf75957ff

Agile Planning Jerome Kehrli / niceideas.ch

In terms of process, things occur this way:

1. The Architecture Committee takes Stories created by the Product Management
Committee, designs them and estimates them.

2. The Product Management Committee learns about Stories Estimations and re-
prioritizes the Story Map accordingly

3. The Architecture Committee synchronizes the priorities of the corresponding
Development Tasks.

This can be represented this way:

Page 41

https://www.niceideas.ch/roller2/badtrash/mediaresource/c340b3b7-042e-4dc6-a5d9-fe232b3ffbc2

Agile Planning Jerome Kehrli / niceideas.ch

Let's see now how all of this is used to be able to achieve its ultimate objective :
reliable planning and forecasting.

3.3.5 Forecasting

So ... forecasting, finally.
At the end of the day, pretty much everything I have presented above, all these
tools, charts and processes are deployed towards this ultimate objective: doing
planning and being able to produce accurate forecasts.

If one respects well the processes presented above and use the tools the right ways,
one should end up with the Story Map presented in 3.3.2 Estimation Process, hence
Stories that hold the indication of a pretty accurate estimation in Story Points.

In addition, a story map holds an important notion of priority: the development team
needs to implement all the stories of a row, from left to right, before it can consider
the stories of the next row.

Page 42

https://www.niceideas.ch/roller2/badtrash/mediaresource/f4d13c78-7e20-44e0-87f5-8f2c186c7b75

Agile Planning Jerome Kehrli / niceideas.ch

So how does one know when a story will be implemented by the development team?
The answer is simple: when all stories of the previous rows as well as all stories on
the left on the same row are implemented.
From there, calculating the amount of Story Points to be developed before a specific
story can be implemented is straightforward:

Recovering the example introduced in #3.3.2 Estimation Process, if we want to know
when the Story with the blue box around it, we have first to know how many story
points have to be implemented first, 1750 SP in this example.

Base on this, we know that this story will be delivered once all the stories
before it will be implemented plus this story as well, hence 1750 + 100 SP =
1850 SP.

Estimating a delivery date

In order to estimate a delivery date for that story, we need to know how much time
is required to deliver these 1850 SP.
Here comes the notion of Sprint capacity, or rather Spring velocity. Strictly speaking,
Agilists speak of capacity when reasoning of man days and Sprint velocity when

Page 43

https://www.niceideas.ch/roller2/badtrash/mediaresource/fa67f626-9e00-4454-86d8-ea938003c1d0

Agile Planning Jerome Kehrli / niceideas.ch

reasoning in Story Points.
I myself use Sprint capacity for both cases.

Computing Sprint velocity requires to have all the practices described in introduction
in place for several Sprints. I will come back on practices in the next chapters so I'm
leaving them aside for now.
If the Agile Team is mature in regards to its practices, it can compute the Sprint
Capacity be looking at the range of Story Points achieved during 5 last sprints:

We don't use the most extreme, minimum and maximum values. Extreme values
most of the time explain themselves by external factors: people get sick, leaves on
holidays, tasks are sometimes finished in next sprint, etc.
Instead, out of five sprints, we'll use the second maximum value and the last-but-
one value.

We use this range, and not a single value of average or median, to address a
fundamental aspect of software engineering: the uncertainty.
The range gives us a lower value and an upper value which we will use as follows.

• In case of fixed time, when we have a fixed delivery date, the lower and

upper values give us the minimum or maximum set of features we can have
implemented at that date.

• In case of fixed scope, when we have to release a version of the software

with a given set of features, the lower and upper values will give us the
earliest date and the latest date at which we can release.

As a sidenote, when we count Story Points implemented in a sprint, we should focus
on developer tasks, not User Stories, since User Stories are too coarse grained.
A User story can well take several sprints to be completed. A developer task within

Page 44

https://www.niceideas.ch/roller2/badtrash/mediaresource/91f84cf5-d6b9-4769-ae04-f4c739c3f3da

Agile Planning Jerome Kehrli / niceideas.ch

one of these stories should not. Tasks should be designed in such a way that they
are small enough to always fit a sprint.

Recovering the example above, let's imagine we are want to achieve a fixed scope,
we want to know, using the Story Map as it is, how much time will be required to
implement these 1850 Story Points.

• Using the lower limit of 128 SP per sprint, it would take us 15 sprints to

complete the scope, hence 30 weeks or 6.7 months

• Using the upper limit of 138 SP per sprint, it would take us 14 sprints to

complete the scope, hence 28 weeks or 6.2 months

Based on this, the PMC or the Product Owner can communicate to the stakeholders
that the feature would be release not before 6 months but before 7 months.

3.3.6 Development process: Scrum

I said enough about Scrum in both this paper and my previous article.
Let me just introduce this chart that does a great job in introducing the notion of
Product Increment as a shippable version of the product since we adopt
Continuous Delivery:

Page 45

https://www.niceideas.ch/roller2/badtrash/entry/agile-software-development-lessons-learned#sec13
https://www.niceideas.ch/roller2/badtrash/mediaresource/433558bd-c825-492f-9cd2-c83c2fba059d

Agile Planning Jerome Kehrli / niceideas.ch

This allows me to present the last tool I mentioned in the introduction of this sprint,
which is the Sprint Kanban Board:

The sprint Kanban board is used to track the progress of tasks within the sprint and
enables to organize developer activities.

Page 46

https://www.niceideas.ch/roller2/badtrash/mediaresource/b67a03fb-8033-4b6a-9f9f-648a6b4edd96
https://www.niceideas.ch/roller2/badtrash/mediaresource/66b435d4-08e1-4391-84cb-c4f7dd0b49f5

Agile Planning Jerome Kehrli / niceideas.ch

Some people use extensively burndown charts to track the proper progress of a
sprint or the product backlog towards a specific release as a whole. I myself never
find it so useful. I really get all I want to know about how a release or a specific
sprint is doing by using the Product Backlog, the Product Kanban Board or the Sprint
Kanban.

3.4 The Rituals

Rituals of the various teams are as follows.
Committees are rituals by themselves, the difference between a team and a
committee is that a committee gathers solely for a specific ritual

3.4.1 Product Management Committee

The Product Management Committee gather every X weeks. It really depends of the
corporation, the size of the team, the rate at which new functional requirements
appear. Every few 2 weeks should be sufficient in general, otherwise the frequency
can increase as far as every week.

The duties of the Product Management Committee are as follows:

Story Mapping

• Identification of new needs and requirements (also technical and

technological!)

• Breakdown of these requirements in User Stories

• "Guessing" of an Initial Priority of a User Story based on Value (and foreseen

size)

Maintenance (update) of Priorities

• Setting of Actual Priorities based on Estimations from Architecture Committee

• Review of priorities of Whole Story Map after update of estimations

• From Sprint Management Committee

• From Development Team

Page 47

https://www.niceideas.ch/roller2/badtrash/mediaresource/cbd5a9a0-6786-43d7-9731-066f834c4770

Agile Planning Jerome Kehrli / niceideas.ch

3.4.2 Architecture Committee

The Architecture Committee also gather every X weeks. It should meet at least few
minutes (coffee break) but not more than one or two days after Product
Management Committee.
The Architecture Committee recovers the last User Stories designed at PMC and
synchronizes the Product Backlog with the Story Map. Stories are specified, designed
and broken downs in Development Tasks.

The duties of the Architecture Committee are as follows:

Specification and Design of User Stories

• Specification of functional and non-functional requirements

• Identification of business rules

• Identification of Acceptance criteria

• Design of GUI

• Architecture and Design of Software

Estimation of User Stories

• Breakdown in individual Development Tasks

• This needs to be done sufficiently in advance

• Estimation of Development Tasks

• Computing of total Estimation and reporting on User Story

• Continuous Improvement: understanding of gaps in estimation after

notification of Sprint Committee and how to improve

Software Architecture

• Identification and maintenance of Coding Standards and Architecture

Standards

• Review of ad'hoc architecture topics

Page 48

https://www.niceideas.ch/roller2/badtrash/mediaresource/be8600bc-85ae-48d9-b6d3-a81a2d35554d

Agile Planning Jerome Kehrli / niceideas.ch

3.4.3 Sprint Management Committee

The Sprint Management Committee gathers at every beginning and end of sprint.
A sprint starts with the Sprint Planning and ends with Sprint Demo and Sprint
Retrospective:

Sprint Planning

• Discuss Development Tasks to ensure whole team has a clear view of what

needs to be done → Detailed Tasks

• Review and challenge estimations of Detailed Tasks. Update estimation of User

Story accordingly

• Feed the Sprint Backlog with such Detailed Tasks until Sprint Capacity is

reached

Sprint Retro

• Review Tasks not completed and create task identifying GAP for next Sprint.

Update estimations.

• Review SP achieved during sprint and review Sprint Capacity

• Discuss issues encountered during Sprint and identify action points. Update

processes and rituals accordingly

• Continuous Improvement: understanding of gaps in tasks and estimations and

how to improve

Sprint Demo

• End of Sprint / really optional with Continuous Delivery and Continuous

Acceptance Tests

• Present sprint developments and integrate feedback. Create new tasks and

update estimations.

Page 49

https://www.niceideas.ch/roller2/badtrash/mediaresource/df862c29-1b79-4c8a-b253-7a900ffbda37

Agile Planning Jerome Kehrli / niceideas.ch

3.4.4 Development Team - Daily Scrum

The daily scrum happens every day, ideally early in the moment, at the time all the
team is in the office.
The scope of the daily scrum is as follows:

Round table - every team member presents:

• Past or current development task

• Status on that task and precise progress

• Next steps

• Next task if former is completed

• Identification of unforeseen GAPS and adaptation of estimations

Identification of challenges, issues and support needs

• Scheduling of ad'hoc meeting and required attendees to discuss specific

issues

3.5 The Values

Sticking rituals, respecting principles and enforcing practices is difficult.

• It's difficult to ensure and behaves in such a way that breaking the build

(failing tests) is an exception.

• It's difficult to respect the boyscout rule.

• It's a lot more difficult to design things carefully and stick to the KISS principle.

• It's difficult and a lot of work to keep the Story Map and Product Backlog in

sync and up-to date with the reality.

• It's difficult to stick to the TDD approach.

• It's difficult not to squeeze the Kaizen phase at the end of every meeting and

being objective when it comes to analyzing strengths and weaknesses.

Page 50

https://www.niceideas.ch/roller2/badtrash/mediaresource/2895b34e-0cd6-4e6c-9a85-4b94723b8f60

Agile Planning Jerome Kehrli / niceideas.ch

All of this make two Agile values especially important: Discipline and courage.
Both are utmost important and essential to address these difficulties.

Sticking to the Scrum rituals, enforcing TDD and other XP principles and practices
require courage and discipline. It also requires a lot of discipline to Maintain and
synchronize the Product Backlog and the Story Map.
Updating the estimations of the User Stories continuously as the understanding of
the work to be done progresses also takes a lot of discipline.

Finally, discipline and courage are enforced by a strict definition of the processes
and rituals and a proper maintenance of this definition as the culture and practices
evolve.
At the end of the day, defining these committees and rituals is all about that. Why
are all these committees / teams / rituals required if eventually a person can have
several roles? Because they enforce discipline: they are scheduled and have precise
agendas.

Page 51

Agile Planning Jerome Kehrli / niceideas.ch

4. Overview of the whole process

The whole process looks as follows:

• Product Management Committee (X-Weekly)

• 1 Identification of a new User Story

• 2 Initial foreseen priority (i.e. release) depending on value and initial

estimation (oral)
• Architecture Committee (X-Weekly)

• 3 Design and specification by architecture committee : Story →

Development Story → Task
• 4 Estimation of individual tasks

• 5 Computation of total SP and setting of size of Development Story and

User Story
• 6 Re-prioritization (based on new estimation)

• Sprint Planning + Sprint retrospective (Sprintly)

• 7 Review of TaskS and discussion : Task → Detailed Task

• 8 Adaptation of Estimation on TaskS

• 9 Update of Total Size of Development Story and User Story

• 10 Notification to Architecture Committee (Kaizen / Sprint retrospective)

• Daily Scrum

• 11 Identification of Gap on Task

• 12 Adaptation of Estimation on Task

• 13 Update of Total Size of Development Story and User Story

• 14 Notification to Architecture Committee (Kaizen / Sprint retrospective)

In a graphical way:

Page 52

Agile Planning Jerome Kehrli / niceideas.ch

Page 53

https://www.niceideas.ch/roller2/badtrash/mediaresource/6e3fc346-7277-45ce-af68-bea91cba88d5

Agile Planning Jerome Kehrli / niceideas.ch

5. Return on Practices

As stated a lot of times in this paper, all of this, reliable planning and true agility,
require a strong commitment of the team to Agile practices and principles.

One cannot apply only a small subset of the Agile Practices and believe he will
achieve true agility and Reliable Agile Planning.
The Agile practices I listed in introduction form a package with strong dependencies
between each other.

IMHO the dependencies are as follows:

An arrow denotes a dependency between two practices.

Explanations of a few of these dependencies:

• You cannot imagine reliable planning and forecasting if you don't provide

the management with appropriate tools : Story Map and Kanban boards.
Also, it's going to be difficult without a proper technical tool for the
development team: The Product Backlog.
Finally, it obviously requires Reliable Estimations.

• Reliable estimations need to have manageable and well planned sprints.

1 week sprints are too small, a lot can happen in 1 week while 3 weeks are too
big in my opinion, the fluctuations are too important. I strongly believe that 2
weeks sprints is the right size when it comes to having an accurate and

Page 54

https://www.niceideas.ch/roller2/badtrash/mediaresource/509a7199-f9b7-41d4-8ee3-e1970fb11ece

Agile Planning Jerome Kehrli / niceideas.ch

reliable Sprint Capacity (or Velocity) in SP.
With 2 weeks sprints only, the development team cannot afford spending time
on releasing the Shippable Product, releasing should be a completely
automated procedure and in this regards Continuous Delivery is not
optional.

• Then achieving Continuous Delivery requires a lot of things and a good

mastery of common XP and DevOps Practices.

Page 55

Agile Planning Jerome Kehrli / niceideas.ch

6. Conclusion

Management needs a management tool to take enlightened decision. The product
backlog should not be a management tool, it's really rather the development team's
internal business. The Story Map, on the other hand, is a simple, visual and effective
management tool.
All the rituals and processes introduced in this paper are deployed towards the same
ultimate goal: enabling the management to use the Story Map as a
management tool for planning and forecasting. In addition, the specific form of
Story Map introduced here, the Product Kanban Board, becomes also a Project
Management Tool aimed to tracking the progresses of the development team.

The difficulty, the reason why it requires a strict enforcement of processes and
rituals, is to synchronize the Story Map and the Product Backlog.
Since the development team works mostly with the Product Backlog, the later has
eventually the accurate and realistic information about size and time of deployment,
through the notion of Story Points.
But this is in no help for the management, hence the reason why it is required to
backfeed the estimations put in the Product Backlog to the Story Map.

Eventually, if these processes and rituals are respected and well applied, anyone in
the company can come in front of the Product Kanban Board with a little calculator
and compute the delivery date (or rather the range) for any given story.
Anyone can use the Story Map to compute how much work can be done for any
given date, or what time is required to deliver a specific scope.

All of this with a simple calculator and a few seconds, without Excel, without any
Internet connection, without any complicated too nor any pile of paper, just a
calculator ... or a brilliant mind.

Now having said that, I would like to conclude this paper by mentioning that the
processes and tools I am presenting here work for us. They may not work as is for
another organization. It's up to every organization to discover and find the practices
and principles that best fit its needs and individuals.
As an example, the association of two Story Maps, the "to do" on the left and the
"done" on the right of a Kanban Board for the needs of both Product and Project
Management is a really personal recipe. While I myself got the idea from another
organization, I haven't seen that often.
This shows in my opinion the very best qualities of an agilist: the curiosity to
discover new ways of working and the courage to try them or invent them.

Page 56

	Agile Planning : tools and processes
	1. Introduction
	2. The Fundamentals
	2.1 eXtreme Programming
	2.2 Scrum
	2.3 DevOps
	2.4 Lean Startup
	2.5 Visual Management and Kanban
	2.5.1 Story Map
	2.5.2 Product Backlog
	2.5.3 Kanban Board
	2.5.4 User Stories

	3. Principles
	3.1 The tools
	3.2 The Organization
	3.2.1 Required roles
	3.2.2 Required Committees and teams

	3.3 The Processes
	3.3.1 Design Process
	3.3.2 Estimation Process
	3.3.3 Product Kanban Board Maintenance Process
	3.3.4 Story Map and Backlog synchronization Process
	3.3.5 Forecasting
	3.3.6 Development process: Scrum

	3.4 The Rituals
	3.4.1 Product Management Committee
	3.4.2 Architecture Committee
	3.4.3 Sprint Management Committee
	3.4.4 Development Team - Daily Scrum

	3.5 The Values

	4. Overview of the whole process
	5. Return on Practices
	6. Conclusion

